Mango varietal discrimination using hyperspectral imaging and machine learning

dc.contributor.authorCastro, Wilson
dc.contributor.authorTene, Baldemar
dc.contributor.authorCastro, Jorge
dc.contributor.authorGuivin, Alex
dc.contributor.authorRuesta Campoverde, Nelson Asdrubal
dc.contributor.authorAvila George, Himer
dc.date.accessioned2024-09-30T19:02:01Z
dc.date.available2024-09-30T19:02:01Z
dc.date.issued2024-07-29
dc.description.abstractMango is a highly diverse tropical fruit with numerous varieties that differ in flavor, texture, and chemical composition. Consequently, identifying fraudulent substitutions of mango varieties poses a significant challenge using traditional techniques. Therefore, there is an increasing need for new methods to discriminate between mango varieties. Hyperspectral imaging coupled with machine learning techniques presents a promising approach for varietal discrimination. In this study, mango samples of eleven varieties were collected from a germplasm bank, with four slices obtained from each sample. Hyperspectral images were acquired in the Vis–NIR and NIR ranges for each slice, and spectral profiles were extracted and pretreated. Three discrimination models, linear discriminant analysis, K-nearest neighbor, and artificial neural networks, were implemented and validated using relevant wavelengths selected through a covering array feature selection algorithm. The performance of these models was evaluated using precision, accuracy, and F-score metrics. The average spectral profiles of the studied varieties exhibited a similar behavior with slight differences, which could be used for classification within the evaluated ranges. The optimal number of variables selected to refine the models was 17 for the UV–Vis–NIR range and 21 for the NIR range, with an accuracy ranging between 0.752 and 0.972. This study concludes that hyperspectral imaging combined with machine learning techniques can effectively discriminate between different varieties of mango.es_PE
dc.formatapplication/pdfes_PE
dc.identifier.citationCastro, W.; Tene, B.; Castro, J.; Guivin, A.; Ruesta-Campoverde, N.A.; Avila-George, H. (2024). Mango varietal discrimination using hyperspectral imaging and machine learning. Neural computing and applications, 36, 18693-18703. doi:10.1007/s00521-024-10218-xes_PE
dc.identifier.doihttps://doi.org/10.1007/s00521-024-10218-x
dc.identifier.issn1433-3058
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2587
dc.language.isoenges_PE
dc.publisherSpringer Naturees_PE
dc.publisher.countryGBes_PE
dc.relation.ispartofurn:issn:1433-3058es_PE
dc.relation.ispartofseriesNeural computing and applicationses_PE
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectANNes_PE
dc.subjectClassificationes_PE
dc.subjectHyperspectral imaginges_PE
dc.subjectKNNes_PE
dc.subjectLDAes_PE
dc.subjectMachine learninges_PE
dc.subjectMangoes_PE
dc.subject.agrovocEspectroscopiaes_PE
dc.subject.agrovocSpectroscopyes_PE
dc.subject.agrovocMachine learninges_PE
dc.subject.agrovocAprendizaje automáticoes_PE
dc.subject.agrovocMangifera indicaes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.01es_PE
dc.titleMango varietal discrimination using hyperspectral imaging and machine learninges_PE
dc.typeinfo:eu-repo/semantics/articlees_PE

Archivos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA