Yield estimation based on agronomic traits in vegetables under different biochar levels

dc.contributor.authorCcopi Trucios, Dennis
dc.contributor.authorRequena Rojas, Edilson Jimmy
dc.contributor.authorArias Arredondo, Alberto
dc.contributor.authorTaipe Crispin, Maglorio
dc.contributor.authorMarcelo Matero, Jhonny Demis
dc.contributor.authorPizarro Carcausto, Samuel Edwin
dc.date.accessioned2025-11-12T20:21:06Z
dc.date.available2025-11-12T20:21:06Z
dc.date.issued2025-09-29
dc.description.abstractBiochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in high Andean conditions: spinach (Spinacia oleracea L.), cabbage (Brassica oleracea var.), and chard (Beta vulgaris var.). The study implemented four biochar application rates (0, 10, 20, and 30 t/ha) and measured comprehensive agronomic parameters including leaf count, leaf length, and fresh/dry biomass of both leaves and roots. Simultaneously, UAV-captured multispectral imagery provided spectral indices that were integrated with agronomic data into machine learning models: linear regression, support vector machines (SVM), and regression trees (CART). Results demonstrated significant vegetative growth enhancement and yield increases across all crops, with the 30 t ha-1 application rate producing optimal outcomes. Predictive modeling exhibited remarkable accuracy: spinach analysis via SVM achieved R² = 0.94 and RMSE = 0.32 g; chard analysis through CART delivered R² = 0.92 and RMSE = 0.35 g; and cabbage assessment using CART yielded R² = 0.91 and RMSE = 0.38 g. This research substantiates biochar’s effectiveness as an organic amendment while establishing a reliable framework for crop yield prediction using machine learning algorithms integrated with spectral data. These findings position biochar as a valuable component in sustainable agricultural systems, particularly for vegetable production in challenging high-altitude environments.
dc.description.sponsorshipThis research was funded by the INIA project “Mejoramiento de los servicios de investigación y transferencia tecnológica en el manejo y recuperación de suelos agrícolas degradados y aguas para riego en la pequeña y mediana agricultura en los departamentos de Lima, Áncash, San Martín, Cajamarca, Lambayeque, Junín, Ayacucho, Arequipa, Puno y Ucayali” CUI 2487112, of the Ministry of Agrarian Development and Irrigation (MIDAGRI) of the Peruvian Government.
dc.formatapplication/pdf
dc.identifier.citationCcopi, D., Requena-Rojas, E., Arias-Arredondo, A., Taipe, M., Marcelo, J., & Pizarro, S. (2025). Yield estimation based on agronomic traits in vegetables under different biochar levels. Scientia Horticulturae, 352, 114425. https://doi.org/10.1016/j.scienta.2025.114425
dc.identifier.doihttps://doi.org/10.1016/j.scienta.2025.114425
dc.identifier.issn1879-1018
dc.identifier.urihttp://hdl.handle.net/20.500.12955/2935
dc.language.isoeng
dc.publisherElsevier B.V.
dc.publisher.countryNL
dc.relation.ispartofurn:issn:0304-4238
dc.relation.ispartofseriesScientia Horticulturae
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceInstituto Nacional de Innovación Agraria
dc.source.uriRepositorio Institucional - INIA
dc.subjectBiochar
dc.subjectVegetables
dc.subjectMachine learning
dc.subjectSpectral índices
dc.subjectSustainable agricultura
dc.subjectYield prediction
dc.subjectBiocarbón
dc.subjectHortalizas
dc.subjectAprendizaje automático
dc.subjectÍndices espectrales
dc.subjectAgricultura sostenible
dc.subjectPredicción de rendimiento.
dc.subject.agrovocEspinaca; Basella alba; Repollo; Cabbages; Acelga; Chard; Rendimiento de cultivos; Crop yield; Región andina; Andean region
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.01
dc.titleYield estimation based on agronomic traits in vegetables under different biochar levels
dc.typeinfo:eu-repo/semantics/article

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Ccopi_et-al_2025_biochar_vegetables_yield estimation.pdf
Tamaño:
11.55 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA