Estimation of water stress in maize cultivation utilizing thermal and multispectral imaging from UAVs with machine learning algorithms in Lambayeque, Peru

dc.contributor.authorCruz Grimaldo, Camila Leandra
dc.contributor.authorVilca Gamarra, Cesar Francisco
dc.contributor.authorMillan Ramírez, José Edwin
dc.contributor.authorChumbimune Vivanco, Sheyla Yanet
dc.contributor.authorLlanos Carrillo, Cristina
dc.contributor.authorVera Díaz, Elvis
dc.contributor.authorAgurto Piñarreta, Alex Iván
dc.contributor.authorQuille Mamani, Javier
dc.contributor.authorLeón Dextre, Hairo Alexander
dc.date.accessioned2026-02-05T17:50:31Z
dc.date.available2026-02-05T17:50:31Z
dc.date.issued2026-01-31
dc.description.abstractMaize (Zea mays L.) is a fundamental cereal in global food security, but its vulnerability to water stress compromises its productivity and threatens food availability. This study analyzed the relationship between the crop water stress index (CWSI), obtained from thermal images captured by the Zenmuse H20T camera, and various vegetation indices derived from the MicaSense RedEdge-MX Dual. The analysis included machine learning (ML) models such as random forest (RF), k-nearest neighbors (KNN), and gradient boosting regression (GBR). The results showed that RF was the most accurate model for predicting CWSI in maize, with a coefficient of determination (R²) of 0.80, a root mean square error (RMSE) of 0.13, and a mean absolute error (MAE) of 0.09. KNN achieved an R² of 0.78, an RMSE of 0.13, and an MAE of 0.09, while GBR reached an R² of 0.79, an RMSE of 0.14, and an MAE of 0.10. The red band (668 nm) played a crucial role in RF (70.69%) and GBR (50.92%), whereas in KNN, the simple ratio (SR) index showed the highest importance (36.40%). These findings confirm the superiority of ML models over traditional regression approaches for estimating CWSI in maize. Despite the satisfactory results, the algorithms underestimated CWSI values derived from thermal images, which highlights the need to refine these models to improve their accuracy in future agricultural applications.
dc.description.sponsorshipCUI 2449640
dc.formatapplication/pdf
dc.identifier.citationCruz-Grimaldo, C., Vilca-Gamarra, C., Millan-Ramírez, J., Chumbimune-Vivanco, S. Y., Llanos-Carrillo, C., Vera, E., Agurto, A., Quille-Mamani, J., & León, H. (2026). Estimation of water stress in maize cultivation utilizing thermal and multispectral imaging from UAVs with machine learning algorithms in Lambayeque, Peru. Revista de Teledetección, 67, e23671. https://doi.org/10.4995/raet.2026.23671
dc.identifier.doihttps://doi.org/10.4995/raet.2026.23671
dc.identifier.issn1133-0953
dc.identifier.urihttp://hdl.handle.net/20.500.12955/3018
dc.language.isoeng
dc.publisherAsociación Española de Teledetección
dc.publisher.countryES
dc.relation.ispartofurn:issn:1133-0953
dc.relation.ispartofseriesRevista de Teledetección
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceInstituto Nacional de Innovación Agraria
dc.source.uriRepositorio Institucional - INIA
dc.subjectCrop water stress index (CWSI)
dc.subjectMachine learning
dc.subjectPrecision agriculture
dc.subjectThermal image
dc.subjectVegetation Index
dc.subjectÍndice de estrés hídrico de los cultivos (CWSI)
dc.subjectAprendizaje automático
dc.subjectAgricultura de precisión
dc.subjectImagen térmica
dc.subjectÍndice de vegetación
dc.subject.agrovocZea mays; Maíz; Maize; Estrés Hídrico; Water stress; Agricultura de precisión; Precision agriculture; Teledetección; Remote sensing; Vehículo aéreo no tripulado; Aerial vehicles; Riego; Irrigation.
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.01
dc.titleEstimation of water stress in maize cultivation utilizing thermal and multispectral imaging from UAVs with machine learning algorithms in Lambayeque, Peru
dc.typeinfo:eu-repo/semantics/article

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Cruz-Grimaldo_et-al_2026_water_stress_maize_UAV.pdf
Tamaño:
1.82 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA