Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images

dc.contributor.authorSalazar Reque, Itamar
dc.contributor.authorArteaga, Daniel
dc.contributor.authorMendoza, Fabiola
dc.contributor.authorRojas Meza, María Elena
dc.contributor.authorSoto Jeri, Jonell
dc.contributor.authorHuaman, Samuel
dc.contributor.authorKemper, Guillermo
dc.date.accessioned2023-10-13T20:39:12Z
dc.date.available2023-10-13T20:39:12Z
dc.date.issued2023-09-22
dc.description.abstractMaximizing crop production efficiently and sustainably through plant health monitoring is key for global food security. Monitoring large areas with remote sensing technologies such as unmanned aerial vehicles (UAVs) with sensors deals with time and money issues; however, the usage of advanced sensors such as hyperspectral, multispectral and thermal cameras limit their usage among all the stakeholders. In this study we explore different vegetation indices (VIs) extracted from aerial RGB images acquired in different flights to differentiate the nutritional and water statuses of Hass avocado plantations. We used an image processing workflow consisting of image selection through a convolutional neural network (CNN) model, tree crown segmentation, color correction and feature extraction to automate the computation of VIs from RGB images. To compare the performance of VIs in the differentiation of nutritional and water statuses, we proposed a comparison metric called Mean Distance between Vegetation Indices (MDVI), analyzed the evolution of the extracted features, and studied their relationships with gold standard Normalized Difference Vegetation Index (NDVI) measurements. Since the extracted features from each group vary from flight to flight due to multiple factors such as the light intensity of each season and the phenological stage of the plant, the proposed comparison metric leverages the differences between the features extracted from each group, thus reducing these temporal effects. We found that Modified Green Red Vegetation Index (MGRVI) allows a better differentiation of nutritional and water statuses. Furthermore, the correlation coefficients of this VI in the three statuses and NDVI for nitrogen group range between 0.63 and 0.85, indicating a positive strong relationship. The results of this work show that MGRVI has a potential to be used as a correlation variable in studies that only use RGB sensors in order to monitor the nutritional and water status of crops.es_PE
dc.formatapplication/pdfes_PE
dc.identifier.citationSalazar-Reque, I.; Arteaga, D.; Mendoza, F.; Rojas, M. E.; Soto, J.; Huaman, S.; & Kemper, G. (2023). Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images. Computers and Electronics in Agriculture, 213, 108246. doi: 10.1016/j.compag.2023.108246es_PE
dc.identifier.doihttps://doi.org/10.1016/j.compag.2023.108246
dc.identifier.issn1872-7107
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2349
dc.language.isospaes_PE
dc.publisherElsevieres_PE
dc.publisher.countryNLes_PE
dc.relation.ispartofurn:issn:1872-7107es_PE
dc.relation.ispartofseriesComputers and Electronics in Agriculturees_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/es_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectHass avocadoes_PE
dc.subjectAerial RGB imageses_PE
dc.subjectVegetation Indiceses_PE
dc.subjectNutrient Status Monitoringes_PE
dc.subjectWater Status Monitoringes_PE
dc.subject.agrovocAvocadoses_PE
dc.subject.agrovocAguacatees_PE
dc.subject.agrovocPersea Americanaes_PE
dc.subject.agrovocVegetation indexes_PE
dc.subject.agrovocÍndice de vegetaciónes_PE
dc.subject.agrovocUnmanned aerial vehicleses_PE
dc.subject.agrovocVehículos aéreos no tripuladoses_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.06es_PE
dc.titleDifferentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB imageses_PE
dc.typeinfo:eu-repo/semantics/articlees_PE

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Salazar_et-al_2023_avocado_aerial.pdf
Tamaño:
6.6 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA