Ecological zone-based volume estimation of Calycophyllum spruceanum and Cedrelinga cateniformis in the Northeastern Peruvian Amazon

dc.contributor.authorKoch Duarte, Christian
dc.contributor.authordel Aguila Piña, Carlos Francisco
dc.contributor.authorFernández Sandoval, Andrés
dc.contributor.authorCárdenas Rengifo, Gloria Patricia
dc.contributor.authorSantillán Gonzáles, Manuel Dante
dc.contributor.authorSalazar Hinostroza, Evelin Judith
dc.contributor.authorCastedo Dorado, Fernando
dc.contributor.authorÁlvarez Álvarez, Pedro
dc.contributor.authorGoycochea Casas, Gianmarco
dc.contributor.authorBaselly Villanueva, Juan Rodrigo
dc.date.accessioned2025-12-03T14:56:01Z
dc.date.available2025-12-03T14:56:01Z
dc.date.issued2025-11-08
dc.description.abstractForest volume modeling plays a fundamental role in forest inventory, biomass estimation, and the sustainable management of timber resources. In the Amazon region of Peru, native species such as Calycophyllum spruceanum and Cedrelinga cateniformis hold high ecological and commercial value, yet remain understudied in terms of volumetric estimation. This study aimed to develop and evaluate volumetric models for both species across three ecological zones—humid forest, very humid forest, and dry forest—representing the environmental diversity of the northeastern Peruvian Amazon. A total of 18 volumetric models were fitted for each species and site condition using linear regression techniques. Model performance was assessed through adjusted coefficient of determination (R²adj), root mean square error (RMSE), mean absolute error (MAE), Akaike Information Criterion (AIC), and diagnostic analyses including residual plots and relative error histograms. The results revealed that model performance varied by ecological zone, with the dry forest models showing the highest precision and lowest residual dispersion. Models M3 (Spurr), M4 (Schumacher & Hall), and M9 (Meyer) consistently achieved strong predictive accuracy. Prediction errors were higher in small-volume classes, suggesting the need for caution when applying models to young or small-diameter trees. The developed models are statistically reliable, requiring minimal input variables for the accurate estimation of the timber volume of the two species across various Amazonian environments. It is recommended to adopt zone-specific models for operational use and to continue expanding regional forest databases to improve future model calibration and validation.
dc.formatapplication/pdf
dc.identifier.citationKoch Duarte, C., del Aguila Piña, C. F., Fernández-Sandoval, A., Cárdenas-Rengifo, G. P., Santillán Gonzales, M. D., Salazar Hinostroza, E. J., Castedo-Dorado, F., Álvarez-Álvarez, P., Goycochea Casas, G., & Baselly-Villanueva, J. R. (2025). Ecological zone-based volume estimation of Calycophyllum spruceanum and Cedrelinga cateniformis in the Northeastern Peruvian Amazon. Trees, Forests and People, 22, 101085. https://doi.org/10.1016/j.tfp.2025.101085
dc.identifier.doihttps://doi.org/10.1016/j.tfp.2025.101085
dc.identifier.issn2666-7193
dc.identifier.urihttp://hdl.handle.net/20.500.12955/2950
dc.language.isoeng
dc.publisherElsevier B.V.
dc.publisher.countryNL
dc.relation.ispartofurn:issn:2666-7193
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceInstituto Nacional de Innovación Agraria
dc.source.uriRepositorio Institucional - INIA
dc.subjectAllometric volume functions
dc.subjectForest inventory
dc.subjectTropical silviculture
dc.subjectRegression
dc.subjectFunciones alométricas de volumen
dc.subjectInventario forestal
dc.subjectSilvicultura tropical
dc.subjectRegresión
dc.subject.agrovocInventario forestal; Forest inventories; Silvicultura; Silviculture; Modelo matemático; Mathematical models; Medio ambiente; Environment; Bosque tropical; Tropical forests; Ordenación forestal; Forest management.
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.00
dc.titleEcological zone-based volume estimation of Calycophyllum spruceanum and Cedrelinga cateniformis in the Northeastern Peruvian Amazon
dc.typeinfo:eu-repo/semantics/article

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Koch_et-al_2025_volume estimation_ecological zones_peruvian amazon.pdf
Tamaño:
5.94 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA