Using biometric analysis to estimate body weight in Creole goats

dc.contributor.authorTrillo Zárate, Fritz Carlos
dc.contributor.authorParedes Chocce, Miguel Enrique
dc.contributor.authorSalinas Marcos, Jorge
dc.contributor.authorTemoche Socola, Víctor Alexander
dc.contributor.authorTafur Gutiérrez, Lucinda
dc.contributor.authorSessarego Dávila, Emmanuel Alexander
dc.contributor.authorAcosta Granados, Irene Carol
dc.contributor.authorPalomino Guerrera, Walter
dc.contributor.authorCruz Luis, Juancarlos Alejandro
dc.contributor.authorRuiz Chamorro, Jose Antonio
dc.date.accessioned2025-10-20T16:13:17Z
dc.date.available2025-10-20T16:13:17Z
dc.date.issued2025-09-30
dc.description.abstractBackground: Creole goat husbandry for milk and meat improves food security in rural areas in Perú. Body weight (BW) is a key trait for selecting breeding stock, and it is estimated to be using algorithms. Likewise, BW is common in livestock farming. Aim: This study aimed to compare BW prediction models using a data mining algorithm in Creole goats, considering their biometric measurements. Methods: Data from 1,075 females aged between 1 and 4 years were used. Measurements of chest width, thoracic perimeter, wither height, sacrum height, rump width and length, body length, cannon bone perimeter, age, and region of the herd were recorded. The regression trees (classification and regression tree), support vector regression (SVR), and random forest regression (RFR) algorithms were used. Results: The SVR was better at predicting BWs in Creole goat herds. Similarly, the results were stable during training (R² = 0.765) and testing (R² = 0.707). However, it should be noted that RFR performed better with training data (R² = 0.942). Conclusion: The proposed predictive models have demonstrated significant potential for accurately predicting BW based on biometric data. Finally, it contributes to better selection, feeding, and sanitary management of Creole goats.
dc.description.sponsorshipThis study received financial support from the project entitled "Improvement of Research and Technology Transfer" Services for the Sustainable Management of Goat Livestock in Dry Forests and the Central Coast across the following departments: Tumbes, Piura, Lambayeque, Amazonas, La Libertad, Ancash, Ayacucho, Ica, and Lima, with CUI 2506684, facilitated by the National Institute of Agrarian Innovation.
dc.formatapplication/pdf
dc.identifier.citationTrillo-Zárate, F., Paredes-Chocce, M. E., Salinas, J., Temoche-Socola, V. A., Tafur Gutiérrez, L., Sessarego, E. A., Acosta, I., Palomino-Guerrera, W., Cruz-Luis, J. A., & Ruiz-Chamorro, J. A. (2025). Using biometric analysis to estimate body weight in Creole goats. Open Veterinary Journal, 15(9), 4496-4504. https://doi.org/10.5455/OVJ.2025.v15.i9.55
dc.identifier.doihttps://doi.org/10.5455/OVJ.2025.v15.i9.55
dc.identifier.urihttp://hdl.handle.net/20.500.12955/2910
dc.language.isoeng
dc.publisherEldaghayes Publisher
dc.publisher.countryLY
dc.relation.ispartofurn:issn:2226-4485
dc.relation.ispartofseriesOpen Veterinary Journal
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/nc/4.0/
dc.sourceInstituto Nacional de Innovación Agraria
dc.source.uriRepositorio Institucional - INIA
dc.subjectAlgorithms
dc.subjectCreole
dc.subjectMachine learning
dc.subjectPredictive models
dc.subjectMorphometrics goats
dc.subjectAlgoritmos
dc.subjectCriollo
dc.subjectAprendizaje automático
dc.subjectModelos predictivos
dc.subjectMorfometría de cabras
dc.subject.agrovocBody weight; Peso corporal; Animal morphology; Morfología animal; Body measurements; Morfología animal
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.03.01
dc.titleUsing biometric analysis to estimate body weight in Creole goats
dc.typeinfo:eu-repo/semantics/article

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Fritz_et-al_2025_biometric_creole_goats.pdf
Tamaño:
420.34 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA