UAV Flight Orientation and Height Influence on Tree Crown Segmentation in Agroforestry Systems

dc.contributor.authorBaselly Villanueva, Juan Rodrigo
dc.contributor.authorFernández Sandoval, Andrés
dc.contributor.authorPinedo Freyre, Sergio Fernando
dc.contributor.authorSalazar Hinostroza, Evelin Judith
dc.contributor.authorCárdenas Rengifo, Gloria Patricia
dc.contributor.authorPuerta, Ronald
dc.contributor.authorHuanca Diaz, José Ricardo
dc.contributor.authorTuesta Cometivos, Gino Anthony
dc.contributor.authorVallejos Torres, Geomar
dc.contributor.authorGoycochea Casas, Gianmarco
dc.contributor.authorÁlvarez Álvarez, Pedro
dc.contributor.authorIsmail, Zool Hilmi
dc.date.accessioned2026-01-15T22:20:47Z
dc.date.available2026-01-15T22:20:47Z
dc.date.issued2026-01-09
dc.description.abstractPrecise crown segmentation is essential for assessing structure, competition, and productivity in agroforestry systems, but delineation is challenging due to canopy heterogeneity and variability in aerial imagery. This study analyzes how flight height and orientation affect segmentation accuracy in an agroforestry system of the Peruvian Amazon, using RGB images acquired with a DJI Mavic Mini 3 Pro UAV and the instance-segmentation models YOLOv8 and YOLOv11. Four flight heights (40, 50, 60, and 70 m) and two orientations (parallel and transversal) were analyzed in an agroforestry system composed of Cedrelinga cateniformis (Ducke) Ducke, Calycophyllum spruceanum (Benth.) Hook.f. ex K.Schum., and Virola pavonis (A.DC.) A.C. Sm. Results showed that a flight height of 60 m provided the highest delineation accuracy (F1 ≈ 0.88 for YOLOv8 and 0.84 for YOLOv11), indicating an optimal balance between resolution and canopy coverage. Although YOLOv8 achieved the highest precision under optimal conditions, it exhibited greater variability with changes in flight geometry. In contrast, YOLOv11 showed a more stable and robust performance, with generalization gaps below 0.02, reflecting a stronger adaptability to different acquisition conditions. At the species level, vertical position and crown morphological differences (Such as symmetry, branching angle, and bifurcation level) directly influenced detection accuracy. Cedrelinga cateniformis displayed dominant and asymmetric crowns; Calycophyllum spruceanum had narrow, co-dominant crowns; and Virola pavonis exhibited symmetrical and intermediate crowns. These traits were associated with the detection and confusion patterns observed across the models, highlighting the importance of crown architecture in automated segmentation and the potential of UAVs combined with YOLO algorithms for the efficient monitoring of tropical agroforestry systems.
dc.description.sponsorshipThis research was financed by the National Forestry Program of the National Institute for Agrarian Innovation and the “Programa Presupuestal 121—Mejora de la articulación de los pequeños productores a los mercados”.
dc.formatapplication/pdf
dc.identifier.citationBaselly-Villanueva, J. R., Fernández-Sandoval, A., Pinedo Freyre, S. F., Salazar-Hinostroza, E. J., Cárdenas-Rengifo, G. P., Puerta, R., Huanca Diaz, J. R., Tuesta Cometivos, G. A., Vallejos-Torres, G., Goycochea Casas, G., Álvarez-Álvarez, P., & Ismail, Z. H. (2026). UAV flight orientation and height influence on tree crown segmentation in agroforestry systems. Forests, 17(1), 87. https://doi.org/10.3390/f17010087
dc.identifier.doihttps://doi.org/10.3390/f17010087
dc.identifier.issn1999-4907
dc.identifier.urihttp://hdl.handle.net/20.500.12955/2994
dc.language.isoeng
dc.publisherForests
dc.publisher.countryCH
dc.relation.ispartofurn:issn: 1999-4907
dc.relation.ispartofseriesMDPI
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceInstituto Nacional de Innovación Agraria
dc.source.uriRepositorio Institucional - INIA
dc.subjectCalycophyllum spruceanum
dc.subjectCedrelinga cateniformis
dc.subjectVirola pavonis
dc.subjectcrown
dc.subjectforest monitoring
dc.subjectRemote sensing
dc.subjectYOLO
dc.subjectCorona
dc.subjectMonitoreo forestal
dc.subjectTeledetección
dc.subject.agrovocSistema agroforestal; Agroforestry systems; Teledetección; Remote sensing; Vehículo aéreo no tripulado; Unmanned aerial vehicles; Árbol forestal; Forest tres; Detección; Detection
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.06
dc.titleUAV Flight Orientation and Height Influence on Tree Crown Segmentation in Agroforestry Systems
dc.typeinfo:eu-repo/semantics/article

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Baselly_et-al_2026_uav_segmentation_agroforestry.pdf
Tamaño:
2.27 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA