Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12955/2290
Título : Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery
Autor : Pizarro Carcausto, Samuel Edwin
Pricope, Narcisa G.
Figueroa Venegas, Deyanira Antonella
Carbajal Llosa, Carlos Miguel
Quispe Huincho, Miriam Rocío
Vera Vilchez, Jesús Emilio
Alejandro Méndez, Lidiana Rene
Achallma Mendoza, Lino
González Tovar, Izamar Estrella
Salazar Coronel, Wilian
Loayza, Hildo
Cruz Luis, Juancarlos Alejandro
Arbizu Berrocal, Carlos Irvin
Fecha de publicación : 20-jun-2023
Publicado en: Remote sensing
Resumen : The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a computationally expensive procedure, taking days or weeks to obtain accurate results using a desktop workstation. To overcome these challenges, cloud-based solutions such as Google Earth Engine (GEE) have been used to analyze complex data with machine learning algorithms. In this study, we explored the feasibility of designing and implementing a digital soil mapping approach in the GEE platform using high-resolution reflectance imagery derived from a thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). We compared a suite of multispectral-derived soil and vegetation indices with in situ measurements of physical-chemical soil properties in agricultural lands in the Peruvian Mantaro Valley. The prediction ability of several machine learning algorithms (CART, XGBoost, and Random Forest) was evaluated using R2, to select the best predicted maps (R2 > 0.80), for ten soil properties, including Lime, Clay, Sand, N, P, K, OM, Al, EC, and pH, using multispectral imagery and derived products such as spectral indices and a digital surface model (DSM). Our results indicate that the predictions based on spectral indices, most notably, SRI, GNDWI, NDWI, and ExG, in combination with CART and RF algorithms are superior to those based on individual spectral bands. Additionally, the DSM improves the model prediction accuracy, especially for K and Al. We demonstrate that high-resolution multispectral imagery processed in the GEE platform has the potential to develop soil properties prediction models essential in establishing adaptive soil monitoring programs for agricultural regions.
Palabras clave : Soil mapping
Google Earth Engine
Machine learning
Cloud computing
metadata.dc.subject.agrovoc: Soil surveys
Reconocimiento de suelos
Unmanned aerial vehicles
Vehículos aéreos no tripulados
Machine learning
Editorial : MDPI
Citación : Pizarro, S.; Pricope, N. G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; ... & Arbizu, C. I. (2023). Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery. Remote Sensing, 15(12), 3203. doi: 10.3390/rs15123203
URI : https://hdl.handle.net/20.500.12955/2290
metadata.dc.identifier.doi: https://doi.org/10.3390/rs15123203
ISSN : 2072-4292
metadata.dc.subject.ocde: https://purl.org/pe-repo/ocde/ford#4.01.06
Aparece en las colecciones: Artículos científicos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Pizarro_et-al_2023_soil_mapping.pdfArticle (English)11,1 MBAdobe PDFVisualizar/Abrir

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons