Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12955/1852
Título : Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru
Autor : Saravia Navarro, David
Salazar Coronel, Wilian
Valqui Valqui, Lamberto
Quille Mamani, Javier Alvaro
Porras Jorge, Rossana
Corredor Arizapana, Flor Anita
Barboza Castillo, Elgar
Vásquez Pérez, Héctor Vladimir
Arbizu Berrocal, Carlos Irvin
Fecha de publicación : 17-may-2022
Resumen : Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability in the farmer's economy. In this study we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using remotely sensed spectral vegetation indices (VI). A total of 10 VI (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. In the present study, highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA indicated a clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimate the performance, showing greater precision at 51 DAS. The use of RPAS to monitor crops allows optimizing resources and helps in making timely decisions in agriculture in Peru.
Palabras clave : Vegetation índices
Precision farming
Remote sensing
Editorial : MDPI
Citación : Saravia, D.; Salazar, W.; Valqui, L.; Quille, J.; Porras, R.; Corredor, F.; Barboza, E.; Vásquez, H. & Arbizu, C. (2022). Yield Predictions of Four Hybrids of Maize (Zea mays) using Multispectral Images Obtained from RPAS in the Coast of Peru. Preprints, 2022050231. doi: 10.20944/preprints202205.0231.v1
URI : https://hdl.handle.net/20.500.12955/1852
metadata.dc.identifier.doi: https://doi.org/10.20944/preprints202205.0231.v1
metadata.dc.subject.ocde: https://purl.org/pe-repo/ocde/ford#4.04.00
Aparece en las colecciones: Artículos científicos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Arbizu-et-al_2022_Zea_mays.pdf1,31 MBAdobe PDFVisualizar/Abrir

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons