Examinando por Materia "Thermal performance"
Mostrando 1 - 1 de 1
- Resultados por página
- Opciones de ordenación
Ítem Efficiency of a compound parabolic collector for domestic hot water production using the F- chart method(International Hellenic University School of Science and Technology, 2024-06-01) Ortega Quispe, Kevin Abner; Huari Vila, Oscar Paul; Ccopi Trucios, Dennis; Lozano Povis, Arlitt Amy; Enriquez Pinedo, Lucia Carolina; Cordova Torres, BettyAmong solar energy technologies, differences exist in terms of costs, performance, and environmental sustainability. Flatplate solar collectors, solar towers, and parabolic dish systems offer high thermal efficiency and versatility, but they may be more costly and bulky compared to other collector models. This study focused on evaluating the efficiency of a cylindrical parabolic collector (CPC) for the production of domestic hot water in a high Andean region of Peru, using the F-Chart method. Its performance was estimated considering the energy demand for hot water in a single-family home with four occupants, in accordance with national regulations and international recommendations. Additionally, the collector area, water temperature, and incident solar radiation were determined based on meteorological data obtained using the PVsyst software. On the other hand, the F-Chart methodology was employed to find the dimensionless factors X and Y of the CPC collector, which allowed estimating the solar fraction factor and the monthly useful energy that can be provided by the designed CPC system. The results showed that, during months of maximum solar radiation, the CPC is capable of satisfying between 129% and 144% of the energy demand for hot water. This indicates that there is a surplus of usable solar energy in the collector during the summer, while in autumn and winter, the solar contribution balances and slightly exceeds the demand. CPC can significantly contribute to the development of high Andean areas by improving quality of life, reducing costs, and promoting environmental sustainability compared to other available technologies.