Examinando por Materia "South America"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem The phylogeography of potato virus X shows the fingerprints of its human vector(MDPI, 2021-09-09) Fuentes, Segundo; Gibbs, Adrian J.; Hajizadeh, Mohammad; Perez, Ana; Adams, Ian P.; Fribourg, Cesar E.; Kreuze, Jan; Fox, Adrian; Boonham, Neil; Jones, Roger A. C.Potato virus X (PVX) occurs worldwide and causes an important potato disease. Complete PVX genomes were obtained from 326 new isolates from Peru, which is within the potato crop′s main domestication center, 10 from historical PVX isolates from the Andes (Bolivia, Peru) or Europe (UK), and three from Africa (Burundi). Concatenated open reading frames (ORFs) from these genomes plus 49 published genomic sequences were analyzed. Only 18 of them were recombinants, 17 of them Peruvian. A phylogeny of the non-recombinant sequences found two major (I, II) and five minor (I-1, I-2, II-1, II-2, II-3) phylogroups, which included 12 statistically supported clusters. Analysis of 488 coat protein (CP) gene sequences, including 128 published previously, gave a completely congruent phylogeny. Among the minor phylogroups, I-2 and II-3 only contained Andean isolates, I-1 and II-2 were of both Andean and other isolates, but all of the three II-1 isolates were European. I-1, I-2, II-1 and II-2 all contained biologically typed isolates. Population genetic and dating analyses indicated that PVX emerged after potato’s domestication 9000 years ago and was transported to Europe after the 15th century. Major clusters A–D probably resulted from expansions that occurred soon after the potato late-blight pandemic of the mid-19th century. Genetic comparisons of the PVX populations of different Peruvian Departments found similarities between those linked by local transport of seed potato tubers for summer rain-watered highland crops, and those linked to winter-irrigated crops in nearby coastal Departments. Comparisons also showed that, although the Andean PVX population was diverse and evolving neutrally, its spread to Europe and then elsewhere involved population expansion. PVX forms a basal Potexvirus genus lineage but its immediate progenitor is unknown. Establishing whether PVX′s entirely Andean phylogroups I-2 and II-3 and its Andean recombinants threaten potato production elsewhere requires future biological studies.Ítem Two centuries of hydroclimatic variability reconstructed from tree-ring records over the Amazonian Andes of Peru(American Geophysical Union, 2020-09-09) Humanes Fuente, V.; Ferrero, M. E.; Muñoz, A. A.; González Reyes, Á.; Requena Rojas, E. J.; Barichivich, J.; Inga, J. G.; Layme Huaman, Eva TrinidadAlmost half of the tributaries of the Amazon River originate in the tropical Andes and support large populations in mountain regions and downstream areas. However, it is difficult to assess hydroclimatic conditions or to evaluate future scenarios due to the scarcity of long, high‐quality instrumental records. Data from the Global Precipitation Climatology Project (GPCP) provide a complete record since 1979 and offer a good representation of rainfall over the tropical Andes. Longer records are needed to improve our understanding of rainfall variability and summer monsoon behavior at various scales. We developed the first annually resolved precipitation reconstruction for the tropical Andes in Peru, based on tree‐ring chronologies of Cedrela and Juglans species. The annual (November–October) reconstruction extends the short instrumental records back to 1817, explaining 68% of the total variance of precipitation over the 1979–2007 calibration period. The reconstruction reveals the well‐documented influence of El Niño‐ Southern Oscillation (ENSO) on Amazon Rainfall at interannual scales (~19% of total variance) and significant multidecadal variability with alternating periods of about 40 years (~13% of rainfall variability) related to the Atlantic Multidecadal Oscillation (AMO). Both oscillatory modes can explain dry and humid periods observed within the reconstruction and are likely associated with the negative trends of rainfall in the short instrumental records and the increased drought recurrence in recent decades. Our results show that montane tropical tree rings can be used to reconstruct precipitation with exceptionally high fidelity, characterize the interannual to multidecadal variability, and identify remote forcings in the hydroclimate over the Andean Amazon Basin of Peru.