Examinando por Materia "Phylogenomics"
Mostrando 1 - 6 de 6
- Resultados por página
- Opciones de ordenación
Ítem Characterization of the complete chloroplast genome of a Peruvian landrace of Capsicum chinense Jacq. (Solanaceae), arnaucho chili pepper(Taylor & Francis Group, 2022-01-05) Arbizu Berrocal, Carlos Irvin; Saldaña Serrano, Carla Lizet; Ferro Mauricio, Rubén Darío; Chávez Galarza, Julio César; Herrera Flores, Jordán Valentín; Contreras Liza, Sergio; Guerrero Abad, Juan Carlos; Maicelo Quintana, Jorge LuisIn this study, we sequenced the first complete chloroplast (cp) genome of a Peruvian chili pepper landrace, “arnacucho” (Capsicum chinense). This cp genome has a 156,931 bp in length with typical quadripartite structure, containing a large single copy (LSC) region (87,325 bp) and a 17,912 bp small single-copy (SSC) region, separated by two inverted repeat (IR) regions (25,847 bp); and the percentage of GC content was 37.71%. Arnaucho chili pepper chloroplast genome possesses 133 genes that consists of 86 protein-coding genes, 37 tRNA, eight rRNA, and two pseudogenes. Phylogenetic analysis revealed that this Peruvian chili pepper landrace is closely related to the undomesticated species C. galapagoense; all belong to the Capsiceae tribe.Ítem Complete mitogenome of “pumpo” (Bos taurus), a top bull from a Peruvian genetic nucleus, and its phylogenetic analysis(MDPI, 2024-05-28) Estrada Cañari, Richard; Figueroa Venegas, Deyanira Antonella; Romero Avila, Yolanda; Alvarez García, Wuesley Yusmein; Rojas Cruz, Diorman; Alvarado, Wigoberto; Maicelo, Jorge L.; Quilcate Pairazamán, Carlos Enrique; Arbizu Berrocal, Carlos IrvinThe mitochondrial genome of Pumpo (Bos taurus), a prominent breed contributing to livestock farming, was sequenced using the Illumina HiSeq 2500 platform. Assembly and annotation of the mitochondrial genome were achieved through a multifaceted approach employing bioinformatics tools such as Trim Galore, SPAdes, and Geseq, followed by meticulous manual inspection. Additionally, analyses covering tRNA secondary structure and codon usage bias were conducted for comprehensive characterization. The 16,341 base pair mitochondrial genome comprises 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. Phylogenetic analysis places Pumpo within a clade predominantly composed of European cattle, reflecting its prevalence in Europe. This comprehensive study underscores the importance of mitochondrial genome analysis in understanding cattle evolution and highlights the potential of genetic improvement programs in livestock farming, thus contributing to enhanced livestock practices.Ítem Phylogenomics of the Carrot Genus (Daucus, Apiaceae)(John Wiley & Sons, 2014-10-01) Arbizu Berrocal, Carlos Irvin; Ruess, Holly; Senalik, Douglas; Simon, Philipp W.; Spooner, David M.•Premise of the study: We explored the utility of multiple nuclear orthologs for the taxonomic resolution of wild and cultivated carrot, Daucus species. •Methods: We studied the phylogeny of 92 accessions of 13 species and two subspecies of Daucus and 15 accessions of related genera (107 accessions total) with DNA sequences of 94 nuclear orthologs. Reiterative analyses examined data of both alleles using ambiguity codes or a single allele with the highest coverage, trimmed vs. untrimmed homopolymers; pure exonic vs. pure intronic data; the use of all 94 markers vs. a reduced subset of markers; and analysis of a concatenated data set vs. a coalescent (species tree) approach. •Key results: Our maximum parsimony and maximum likelihood trees were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades. They resolved multiple accessions of many different species as monophyletic with strong support, but failed to support other species. The single allele analysis gave slightly better topological resolution; trimming homopolymers failed to increase taxonomic resolution; the exonic data had a smaller proportion of parsimony‐informative characters. Similar results demonstrating the same dominant topology can be obtained with many fewer markers. A Bayesian concordance analysis provided an overall similar phylogeny, but the coalescent analysis provided drastic changes in topology to all the above. •Conclusions: Our research highlights some difficult species groups in Daucus and misidentifications in germplasm collections. It highlights a useful subset of markers and approaches for future studies of dominant topologies in Daucus.Ítem The complete chloroplast genome of the national tree of Peru, quina (Cinchona officinalis L., Rubiaceae)(Taylor & Francis, 2021-09-06) Arbizu Berrocal, Carlos Irvin; Ferro Mauricio, Rubén Darío; Chávez Galarza, Julio César; Guerrero Abad, Juan Carlos; Vásquez Pérez, Héctor Vladimir; Maicelo Quintana, Jorge LuisHere, we report the first complete chloroplast (cp) genome of Cinchona officinalis. This cp genome has a 156,984 bp in length with typical quadripartite structure, containing a large single copy (LSC) region (83,929 bp) and an 18,051 bp small single-copy (SSC) region, separated by two inverted repeat (IR) regions (27,502 bp). The total GC content was 37.75%. Quina tree chloroplast genome possesses 135 genes that consisted of 89 protein-coding genes, 37 tRNA, eight rRNA, and one pseudogene. Phylogenetic analysis showed that C. officinalis is sister to C. pubescens and sister to them is Isertia laevis; all belong to the Cinchonoideae sub-family.Ítem Unlocking the Complete Chloroplast Genome of a Native Tree Species from the Amazon Basin, Capirona (Calycophyllum spruceanum Benth., Rubiaceae), and Its Comparative Analysis with Other Ixoroideae Species(MDPI, 2021-11-29) Saldaña Serrano, Carla Lizet; Rodriguez Grados, Pedro; Chávez Galarza, Julio César; Feijoo Narvasta, Shefferson; Guerrero Abad, Juan Carlos; Maicelo Quintana, Jorge Luis; Jhoncon, Jorge H.; Arbizu Berrocal, Carlos IrvinCapirona (Calycophyllum spruceanum Benth.) belongs to subfamily Ixoroideae, one of de major lineages in the Rubiaceae family, and is an important timber tree, with origin in the Amazon Basin and has widespread distribution in Bolivia, Peru, Colombia, and Brazil. In this study, we obtained the first complete chloroplast (cp) genome of capirona from department of Madre de Dios located in the Peruvian Amazon. High-quality genomic DNA was used to construct librar-ies. Pair-end clean reads were obtained by PE 150 library and the Illumina HiSeq 2500 platform. The complete cp genome of C. spruceanum has a 154,480 bp in length with typical quadripartite structure, containing a large single copy (LSC) region (84,813 bp) and a small single-copy (SSC) region (18,101 bp), separated by two inverted repeat (IR) regions (25,783 bp). The annotation of C. spruceanum cp genome predicted 87 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, 37 transfer RNA (tRNA) genes and 01 pseudogene. A total of 41 simple sequence repeats (SSR) of this cp genome were divided into mononucleotides (29), dinucleotides (5), trinucleotides (3), and tetranucleotide (4). Most of these repeats were distributed in the noncoding regions. Whole chloroplast genome comparison with the other six Ixoroideae species revealed that the small single copy and large single copy regions showed more divergence than invert regions. Finally, phylogenetic analysis resolved that C. spruceanum is a sister species to Emmenopterys henryi, and confirms its position within the subfamily Ixoroideae. This study reports for the first time the genome organization, gene content, and structural features of the chloroplast genome of C. spruceanum, providing valuable information for genetic and evolutionary studies in the genus Calycophyllum and beyond.Ítem Unlocking the complete chloroplast genome of a native tree species from the Amazon Basin, capirona (Calycophyllum spruceanum, Rubiaceae), and Its comparative analysis with other Ixoroideae species(MDPI, 2022-01-07) Saldaña Serrano, Carla Lizet; Rodriguez Grados, Pedro Manuel; Chávez Galarza, Julio César; Feijoo Narvasta, Shefferson Gilbert Wilson; Guerrero Abad, Juan Carlos; Vásquez Pérez, Héctor Vladimir; Maicelo Quintana, Jorge Luis; Jhoncon, Jorge H.; Arbizu Berrocal, Carlos IrvinCapirona (Calycophyllum spruceanum Benth.) belongs to subfamily Ixoroideae, one of the major lineages in the Rubiaceae family, and is an important timber tree. It originated in the Amazon Basin and has widespread distribution in Bolivia, Peru, Colombia, and Brazil. In this study, we obtained the first complete chloroplast (cp) genome of capirona from the department of Madre de Dios located in the Peruvian Amazon. High-quality genomic DNA was used to construct libraries. Pair-end clean reads were obtained by PE 150 library and the Illumina HiSeq 2500 platform. The complete cp genome of C. spruceanum has a 154,480 bp in length with typical quadripartite structure, containing a large single copy (LSC) region (84,813 bp) and a small single-copy (SSC) region (18,101 bp), separated by two inverted repeat (IR) regions (25,783 bp). The annotation of C. spruceanum cp genome predicted 87 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, 37 transfer RNA (tRNA) genes, and one pseudogene. A total of 41 simple sequence repeats (SSR) of this cp genome were divided into mononucleotides (29), dinucleotides (5), trinucleotides (3), and tetranucleotides (4). Most of these repeats were distributed in the noncoding regions. Whole chloroplast genome comparison with the other six Ixoroideae species revealed that the small single copy and large single copy regions showed more divergence than inverted regions. Finally, phylogenetic analyses resolved that C. spruceanum is a sister species to Emmenopterys henryi and confirms its position within the subfamily Ixoroideae. This study reports for the first time the genome organization, gene content, and structural features of the chloroplast genome of C. spruceanum, providing valuable information for genetic and evolutionary studies in the genus Calycophyllum and beyond.