Examinando por Materia "Land-use change"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon(Stanford University, 2015-08-11) Van Straaten, Oliver; Corre, Marife D.; Wolf, Katrin; Tchienkoua, Martin; Cuellar Bautista, José Eloy; Matthews, Robin; Veldkamp, EdzoTropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion—the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 ± 0.1 for oil palm and cacao agroforestry plantations and 0.8 ± 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses.Ítem Impact of forest degradation on soil properties in the Peruvian Amazon(Springer Nature, 2026-01-16) Vallejos Torres, Geomar; Gaona Jimenez, Nery; Lozano, Andi; Saavedra , Harry; Alva Arévalo, Alberto; Ríos Vargas, Caleb; Saavedra Ramírez, Jorge; Tuesta Hidalgo, Juan; Tuesta Hidalgo, Oscar A.; Vilela, Luis; Valdez Andia, Manuel Jesús; Reategui, Keneth; Baselly Villanueva, Juan Rodrigo; Marín, César; Vento, BárbaraBackground: The Amazonian forests are increasingly threatened due to continuous changes in land use, particularly deforestation. This study aimed to quantify and analyze the vertical distribution of soil glomalin and its relationship with carbon, climate, and soil properties across three forest types of the Peruvian Amazon. A total of 18 plots were selected and sampled in forests with different vegetation cover types: deforested, disturbed, and primary forest. The vertical variation of total glomalin (TG), easily extractable glomalin (EEG), and the number of arbuscular mycorrhizal fungal (AMF) spores was estimated, as it was the relationships of these variables with soil depth, physical-chemical properties, and climate conditions. Results: The mean values for TG, EEG, and AMF showed vertical variations in the three forest cover types, with high values in disturbed forests and degraded soils. Overall, higher mean values were found in the surface soil layers compared to the deep layers. TG, EEG, and AMF were positively corelated with soil organic carbon (SOC) and soil organic matter (SOM). Moreover, the total nitrogen (N), SOC, OM, total phosphorus (P), and soil water content (SWC) presented higher values in the topsoil than the deep layers. Conclusions: The highest production of glomalin in disturbed forests is probably a response to degradation processes. This work is a contribution to expand knowledge about glomalin dynamics in forest soils of the Amazon rainforest and provides essential information for future soil ecosystem restoration practices in tropical forests.
