Examinando por Materia "Human health risk"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Ecological and carcinogenic risk assessment of potentially toxic elements in rangelands and croplands around Lake Junin (Peru): Integrating remote sensing, machine learning, and land cover segmentation(Elsevier, 2025-08-27) Pizarro Carcausto, Samuel Edwin; Requena Rojas, Edilson Jimmy; Barboza, Elgar; Peña Elme, Eunice Dorcas; Arias Arredondo, Alberto Gilmer; Ccopi Trucios, DennisThe Junín Lake basin, a critical high-altitude ecosystem in the central Peruvian Andes, faces severe contamination from potentially toxic elements (PTEs) driven by mining activities, agriculture, and urbanization. This study evaluates the spatial distribution, ecological risk, and human health implications of 14 heavy metals, metalloids, and trace elements in surface soils surrounding the lake. Using 211 soil samples, we integrated remote sensing, land cover classification, and Random Forest machine learning models with spectral, edaphic, topographic, and proximity-based environmental covariates to predict contamination patterns and assess risk. Results reveal extreme contamination, with arsenic (As), lead (Pb), cadmium (Cd), and zinc (Zn) concentrations exceeding ecological thresholds by over 100-fold in agricultural zones. Ecological risk assessments using contamination degree (mCD), pollution load index (PLI), and risk index (RI) indicated that over 99 % of the study area exhibits very high to ultra-high contamination levels. Human health risk analysis identified unacceptable carcinogenic risks from As, Pb, and Cr across adult and pediatric populations, with arsenic presenting the greatest concern. The integration of geospatial tools and machine learning enabled precise identification of contamination hotspots and vulnerable land cover types, demonstrating the value of AI approaches for monitoring contaminated territories. These findings underscore the urgent need for coordinated environmental management, targeted remediation strategies, and community-based monitoring to protect public health and preserve Andean ecosystem integrity.Ítem Ecological and Human Health Risk Assessment of Heavy Metals in Mining-Affected River Sediments in the Peruvian Central Highlands(MDPI, 2025-09-16) Custodio, María; Pizarro Carcausto, Samuel Edwin; Huarcaya, Javier; Ortega Quispe, Kevin Abner; Ccopi Trucios, DennisHeavy metal contamination in rivers is a serious environmental and public health concern, especially in areas affected by mining. This study evaluated the levels of contamination and the associated ecological and carcinogenic risks in the sediments of the Cunas River, located in the central highlands of Peru. Sediment samples were collected from upstream and downstream sections. Several metals and metalloids were analyzed, including copper (Cu), chromium (Cr), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), vanadium (V), zinc (Zn), antimony (Sb), arsenic (As), and cadmium (Cd). The ecological risk assessment focused on ten of these elements, while carcinogenic and non-carcinogenic risks were assessed for seven metals selected based on their toxicological importance. The results showed that Cd and Pb concentrations were higher in the downstream section. Cd and As exceeded ecological risk thresholds. Regarding human health, As and Pb surpassed the acceptable limits for both the Hazard Index (HI) and the Potential Carcinogenic Risk (PCR). According to EPA guidelines, these values indicate a potentially significant lifetime cancer risk. The main exposure routes include direct contact with sediments and the consumption of aquatic organisms. Continuous monitoring, phytoremediation actions, and restrictions on the use of contaminated water are strongly recommended to reduce ecological and health risks.
