Examinando por Materia "Genetic erosion"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Conservation and Use of Latin American Maize Diversity: Pillar of Nutrition Security and Cultural Heritage of Humanity(MDPI, 2021-01-15) Guzzon, Filippo; Arandia Rios, Luis Walquer; Caviedes Cepeda, Galo Mario; Céspedes Polo, Marcia; Chávez Cabrera, Alexander; Muriel Figueroa, Jesús; Medina Hoyos, Alicia Elizabeth; Jara Calvo, Teófilo Wladimir; Molnar, Terence L.; Narro León, Luis Alberto; Narro León, Teodoro Patricio; Mejía Kerguelén, Sergio Luis; Ospina Rojas, José Gabriel; Vásquez, Gricelda; Preciado Ortiz, Ricardo Ernesto; Zambrano, José Luis; Palacios Rojas, Natalia; Pixley, KevinLatin America is the center of domestication and diversity of maize, the second most cultivated crop worldwide. In this region, maize landraces are fundamental for food security, livelihoods, and culture. Nevertheless, genetic erosion (i.e., the loss of genetic diversity and variation in a crop) threatens the continued cultivation and in situ conservation of landrace diversity that is crucial to climate change adaptation and diverse uses of maize. We provide an overview of maize diversity in Latin America before discussing factors associated with persistence of large in situ maize diversity, causes for maize landrace abandonment by farmers, and strategies to enhance the cultivation of landraces. Among other factors, maize diversity is linked with: (1) small-holder farming, (2) the production of traditional food products, (3) traditional cropping systems, (4) cultivation in marginal areas, and (5) retention of control over the production system by the farmers. On the other hand, genetic erosion is associated with substitution of landraces with hybrid varieties or cash crops, and partial (off-farm labor) or complete migration to urban areas. Continued cultivation, and therefore on-farm conservation of genetic diversity held in maize landraces, can be encouraged by creating or strengthening market opportunities that make the cultivation of landraces and open pollinated varieties (OPVs) more profitable for farmers, supporting breeding programs that prioritize improvement of landraces and their special traits, and increasing the access to quality germplasm of landraces and landrace-derived OPVs.Ítem Spatial patterns of diversity and genetic erosion of traditional cassava (Manihot esculenta Crantz) in the Peruvian Amazon: An evaluation of socio-economic and environmental indicators(Springer Nature, 2007-02-23) Willemen, Louise; Scheldeman, Xavier; Soto Cabellos, Víctor; Rafael Salazar, Simón; Guarino, LuigiThis study evaluates quantitatively the suitability of the use of site-specific socio-economic and environmental data as indicators to rapidly assess patterns of diversity and genetic erosion risk in cassava. Socio-economic data as well as farmers’ estimation of genetic erosion were collected in the study area, the Ucayali region of the Peruvian Amazon, through interviews with 285 cassava farmers in 50 communities, while diversity was assessed based on agromorphological characterization of 295 cassava accessions. Using multivariate regression analyses, 50 and 45% of the variation in respectively diversity and genetic erosion estimation could be explained by a selected set of socio-economic and environmental indicators. In both regression models four out of the total of 38 variables proved to contribute significantly (at p < 0.10 level). Additionally, the study revealed that farmers are a good direct source of information on the diversity present at community level, which can contribute to the development of methodologies to assess diversity more rapidly. The results of this study are valuable for the development of models to rapidly assess diversity dynamics in large areas.