Examinando por Autor "Enriquez Pinedo, Lucia"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging(MDPI, 2024-10-06) Urquizo Barrera, Julio Cesar; Ccopi Trucios, Dennis; Ortega Quispe, Kevin; Castañeda Tinco, Italo; Patricio Rosales, Solanch; Passuni Huayta, Jorge; Figueroa Venegas, Deyanira; Enriquez Pinedo, Lucia; Ore Aquino, Zoila; Pizarro Carcausto, SamuelAccurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines with an R2 of 0.50. Differences in root mean square error (RMSE) and mean absolute error (MAE) among the models highlighted variations in prediction accuracy. This study underscores the effectiveness of photogrammetry, UAV, and machine learning in estimating forage biomass, demonstrating that the proposed approach can provide relatively accurate estimations for this purpose.Ítem Using UAV images and phenotypic traits to predict potato morphology and yield in Peru(MDPI, 2024-10-24) Ccopi Trucios, Dennis; Ortega Quispe, Kevin; Castañeda Tinco, Italo; Rios Chavarria, Claudia; Enriquez Pinedo, Lucia; Patricio Rosales, Solanch; Ore Aquino, Zoila; Casanova Nuñez-Melgar, David; Agurto Piñarreta, Alex; Zúñiga López, Luz Noemí; Urquizo Barrera, JulioPrecision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the prediction of morphological quality was less accurate, with Random Forest standing out as the most reliable model (R2 = 0.55 for circularity). Spectral data significantly improved the predictive capacity compared to agronomic data alone. We conclude that integrating spectral índices and multitemporal data into predictive models improved the accuracy in estimating yield and certain morphological traits, offering key opportunities to optimize agricultural management.