Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)
dc.contributor.author | Atalaya Marin, Nilton | |
dc.contributor.author | Barboza Castillo, Elgar | |
dc.contributor.author | Salas López, Rolando | |
dc.contributor.author | Vásquez Pérez, Héctor Vladimir | |
dc.contributor.author | Gómez Fernández, Darwin | |
dc.contributor.author | Terrones Murga, Renzo E. | |
dc.contributor.author | Rojas Briceño, Nilton B. | |
dc.contributor.author | Oliva Cruz, Manuel | |
dc.contributor.author | Gamarra Torres, Oscar Ándres | |
dc.contributor.author | Silva López, Jhonsy Omar | |
dc.contributor.author | Turpo Cayo, Efrain | |
dc.coverage.spatial | Perú | es_PE |
dc.date.accessioned | 2022-06-02T21:45:18Z | |
dc.date.available | 2022-06-02T21:45:18Z | |
dc.date.issued | 2022-05-01 | |
dc.description.abstract | In Peru, grasslands monitoring is essential to support public policies related to the identification, recovery and management of livestock systems. In this study, therefore, we evaluated the spatial dynamics of grasslands in Pomacochas and Ventilla micro-watersheds (Amazonas, NW Peru). To do this, we used Landsat 5, 7 and 8 images and vegetation indices (normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and soil adjusted vegetation index (SAVI). The data were processed in Google Earth Engine (GEE) platform for 1990, 2000, 2010 and 2020 through random forest (RF) classification reaching accuracies above 85%. The application of RF in GEE allowed surface mapping of grasslands with pressures higher than 85%. Interestingly, our results reported the increase of grasslands in both Pomacochas (from 2457.03 ha to 3659.37 ha) and Ventilla (from 1932.38 ha to 4056.26 ha) micro-watersheds during 1990–2020. Effectively, this study aims to provide useful information for territorial planning with potential replicability for other cattle-raising regions of the country. It could further be used to improve grassland management and promote semi-extensive livestock farming. | es_PE |
dc.description.tableofcontents | Abstract. 1. Introduction. 2. Materials and Methods. 3. Results. 4. Discussion. 5. Conclusions. References. | es_PE |
dc.format | application/pdf | es_PE |
dc.identifier.citation | Marin, N.A.; Barboza, E.; López, R.S.; Vásquez, H.V.; Gómez Fernández, D.; Terrones Murga, R.E.; Rojas Briceño, N.B.; Oliva-Cruz, M.; Gamarra Torres, O.A.; Silva López, J.O.; et al. Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru). Land 2022, 11, 674. doi: 10.3390/land11050674 | es_PE |
dc.identifier.doi | https://doi.org/10.3390/land11050674 | |
dc.identifier.journal | Land | es_PE |
dc.identifier.uri | https://hdl.handle.net/20.500.12955/1691 | |
dc.language.iso | spa | es_PE |
dc.publisher | MDPI | es_PE |
dc.publisher.country | Suiza | es_PE |
dc.relation.ispartof | Land 2022, 11(5), 674 | es_PE |
dc.relation.publisherversion | https://doi.org/10.3390/land11050674 | es_PE |
dc.rights | info:eu-repo/semantics/openAccess | es_PE |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | es_PE |
dc.source | Instituto Nacional de Innovación Agraria | es_PE |
dc.source.uri | Repositorio Institucional - INIA | es_PE |
dc.subject | Grassland dynamics | es_PE |
dc.subject | Google Earth Engine (GEE) | es_PE |
dc.subject | Sustainable livestock | es_PE |
dc.subject | Remote sensing | es_PE |
dc.subject | Random forest (RF) | es_PE |
dc.subject | Landsat | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#4.05.00 | es_PE |
dc.title | Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru) | es_PE |
dc.type | info:eu-repo/semantics/article | es_PE |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Atalaya-et-al_2022_Landsat_Data.pdf
- Tamaño:
- 5.5 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: