Implementing artificial intelligence to measure meat quality parameters in local market traceability processes

dc.contributor.authorAlvarez García, Wuesley Yusmein
dc.contributor.authorMendoza, Laura
dc.contributor.authorMuñoz Vílchez, Yudith Yohany
dc.contributor.authorCasanova Núñez-Melgar, David
dc.contributor.authorQuilcate Pairazaman, Carlos
dc.date.accessioned2024-09-30T19:04:59Z
dc.date.available2024-09-30T19:04:59Z
dc.date.issued2024-09-20
dc.description.abstractThe application of computer technologies associated with sensors and artificial intelligence (AI) in the quantification and qualification of quality parameters of meat products of various domestic species is an area of research, development, and innovation of great relevance in the agri-food industry. This review covers the most recent advances in this area, highlighting the importance of computer vision, artificial intelligence, and ultrasonography in evaluating quality and efficiency in meat products’ production and monitoring processes. Various techniques and methodologies used to evaluate quality parameters such as colour, water holding capacity (WHC), pH, moisture, texture, and intramuscular fat, among others related to animal origin, breed and handling, are discussed. In addition, the benefits and practical applications of the technology in the meat industry are examined, such as the automation of inspection processes, accurate product classification, traceability, and food safety. While the potential of artificial intelligence associated with sensor development in the meat industry is promising, it is crucial to recognize that this is an evolving field. This technology offers innovative solutions that enable efficient, cost effective, and consumer-oriented production. However, it also underlines the urgent need for further research and development of new techniques and tools such as artificial intelligence algorithms, the development of more sensitive and accurate multispectral sensors, advances in computer vision for 3D image analysis and automated detection, and the integration of advanced ultrasonography with other technologies. Also crucial is the development of autonomous robotic systems for the automation of inspection processes, the implementation of real-time monitoring systems for traceability and food safety, and the creation of intuitive interfaces for human-machine interaction. In addition, the automation of sensory analysis and the optimisation of sustainability and energy efficiency are key areas that require immediate attention to address the current challenges in this agri-food and agri-industrial sector, highlighting and emphasising the importance of ongoing innovation in the field.es_PE
dc.description.sponsorshipTo Project CUI 2432072: ‘Mejoramiento de la disponibilidad de material genético de ganado bovino con alto valor a nivel nacional. 7 departamentos’ of the Ministry of Agrarian Development and Irrigation – Peru.es_PE
dc.formatapplication/pdfes_PE
dc.identifier.citationAlvarez-García, W.Y.; Mendoza, L.; Muñoz-Vílchez, Y.Y.; Nuñez-Melgar, D.C.; & Quilcate-Pairazaman, C. (2024). Implementing artificial intelligence to measure meat quality parameters in local market traceability processes. International Journal of Food Science and Technology (2024). doi:10.1111/ijfs.17546es_PE
dc.identifier.doihttps://doi.org/10.1111/ijfs.17546
dc.identifier.issn1365-2621
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2589
dc.language.isoenges_PE
dc.publisherJohn Wiley & Sons Inc.es_PE
dc.publisher.countryGBes_PE
dc.relation.ispartofurn:issn:1365-2621es_PE
dc.relation.ispartofseriesInternational Journal of Food Science and Technologyes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectArtificial Intelligencees_PE
dc.subjectComputer visiones_PE
dc.subjectHyperspectral imaginges_PE
dc.subjectMeat qualityes_PE
dc.subjectOhmices_PE
dc.subjectUltrasoundes_PE
dc.subject.agrovocArtificial Intelligencees_PE
dc.subject.agrovocInteligencia artificiales_PE
dc.subject.agrovocMultispectral imageryes_PE
dc.subject.agrovocImagen multiespectrales_PE
dc.subject.agrovocMeat qualityes_PE
dc.subject.agrovocCalidad de la carnees_PE
dc.subject.agrovocUltrasoundes_PE
dc.subject.agrovocUltrasonidoes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.02.01es_PE
dc.titleImplementing artificial intelligence to measure meat quality parameters in local market traceability processeses_PE
dc.typeinfo:eu-repo/semantics/articlees_PE

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Alvarez_et-al_2024_artificial_intelligence_meat.pdf
Tamaño:
359.82 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA