Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence

dc.contributor.authorGoycochea Casas, Gianmarco
dc.contributor.authorBaselly Villanueva, Juan Rodrigo
dc.contributor.authorCoimbra Limeira, Mathaus Messias
dc.contributor.authorEleto Torres, Carlos Moreira Miquelino
dc.contributor.authorGarcia Leite, Hélio
dc.date.accessioned2023-10-02T15:49:10Z
dc.date.available2023-10-02T15:49:10Z
dc.date.issued2023-09-21
dc.description.abstractPeruvian Amazonian rainforests are constantly threatened by forest loss. Understanding changes in forest cover and assessing the level of risk is a permanent concern for numerous scientists and forest authorities. There are many conservation programs for Peruvian forests that involve collaborative efforts and employ diverse methodologies for forest monitoring. In this study, we propose an alternative approach to decision-making for forest preservation, aiming to classify the risk of forest loss in districts within the Peruvian Amazon rainforest. This classification enables sustainable forest management. To accomplish this, we utilized unsupervised learning artificial intelligence through Kohonen's neural network. The network was trained using a historical database spanning from 2001 to 2021, which includes variables such as forest cover and loss, climate, topography, hydrographic networks, and timber forest concessions. Through this approach, the network successfully established five clusters. Following preliminary analysis, we designated these clusters as: low, medium, high, very high, and extremely high risk of forest loss. Kohonen networks demonstrated their effectiveness in clustering forest loss and forest cover. The results indicate a shifting trend among the classes over time, with an increase in the categories exhibiting high and very high risk of forest cover loss. This study provides valuable information for decision-making in the prevention and conservation of Peruvian forests. We strongly recommend maintaining vigilance, particularly in districts classified as a very high or extremely high risk of losing forest cover.es_PE
dc.formatapplication/pdfes_PE
dc.identifier.citationCasas, G.; Baselly, J.; Limeira, M; Torres, C.; & Leite, H. (2023). Classifying the risk of forest loss in the Peruvian Amazon Rainforest: An alternative approach for sustainable forest management using artificial intelligence. Trees, Forests and People, 100440. doi: 10.1016/j.tfp.2023.100440es_PE
dc.identifier.doihttps://doi.org/10.1016/j.tfp.2023.100440
dc.identifier.issn2666-7193
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2293
dc.language.isoenges_PE
dc.publisherElsevieres_PE
dc.publisher.countryNLes_PE
dc.relation.ispartofurn:issn:2666-7193es_PE
dc.relation.ispartofseriesTrees, Forests and Peoplees_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectKohonen neural networkes_PE
dc.subjectForest conservationes_PE
dc.subjectForest preventiones_PE
dc.subjectForest preventiones_PE
dc.subject.agrovocForest conservationes_PE
dc.subject.agrovocConservación de monteses_PE
dc.subject.agrovocForest protectiones_PE
dc.subject.agrovocProtección forestales_PE
dc.subject.agrovocArtificial intelligencees_PE
dc.subject.agrovocInteligencia artificiales_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.02es_PE
dc.titleClassifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligencees_PE
dc.typeinfo:eu-repo/semantics/articlees_PE

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Goycochea_et-al_2023_forest_loss.pdf
Tamaño:
9.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Article (English)

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA