Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru

dc.contributor.authorSaravia Navarro, David
dc.contributor.authorValqui Valqui, Lamberto
dc.contributor.authorSalazar Coronal, Wilian
dc.contributor.authorQuille Mamani, Javier Alvaro
dc.contributor.authorBarboza Castillo, Elgar
dc.contributor.authorPorras Jorge, Zenaida Rossana
dc.contributor.authorInjante Silva, Pedro Hugo
dc.contributor.authorArbizu Berrocal, Carlos Irvin
dc.date.accessioned2023-06-05T16:48:47Z
dc.date.available2023-06-05T16:48:47Z
dc.date.issued2023-05-19
dc.description.abstractIn Peru, common bean varieties adapt very well to arid zones, and it is essential to strengthen their evaluations accurately during their phenological stage by using remote sensors and UAV. However, this technology has not been widely adopted in the Peruvian agricultural system, causing a lack of information and precision data on this crop. Here, we predicted the yield of four beans cultivars by using multispectral images, vegetation indices (VIs) and multiple linear correlations (with 11 VIs) in 13 different periods of their phenological development. The multispectral images were analyzed with two methods: (1) a mask of only the crop canopy with supervised classification constructed with QGIS software; and (2) the grids corresponding to each plot (n = 48) without classification. The prediction models can be estimated with higher accuracy when bean plants reached maximum canopy cover (vegetative and reproductive stages), obtaining higher R2 for the c2000 cultivar (0.942) with the CIG, PCB, DVI, EVI and TVI indices with method 2. Similarly, with five VIs, the camanejo cultivar showed the highest R2 for both methods 1 and 2 (0.89 and 0.837) in the reproductive stage. The models better predicted the yield in the phenological stages V3–V4 and R6–R8 for all bean cultivars. This work demonstrated the utility of UAV tools and the use of multispectral images to predict yield before harvest under the Peruvian arid ecosystem.es_PE
dc.formatapplication/pdf
dc.identifier.citationSaravia, D.; Valqui-Valqui, L.; Salazar, W.; Quille-Mamani, J.; Barboza, E.; Porras-Jorge, R.; ... & Arbizu, C. I. (2023). Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru. Drones, 7(5), 325. doi: 10.3390/drones7050325en
dc.identifier.doihttps://doi.org/10.3390/drones7050325
dc.identifier.issn2504-446X
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2168
dc.language.isoeng
dc.publisherMDPIen
dc.publisher.countryCH
dc.relation.ispartofurn:issn:2504-446X
dc.relation.ispartofseriesDronesen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectMultiple regressionen
dc.subjectMultispectral imagingen
dc.subjectNDVIen
dc.subjectPrecision agricultureen
dc.subjectRemote sensingen
dc.subject.agrovocMultiple regression analysisen
dc.subject.agrovocAnálisis por regresión múltiplees_PE
dc.subject.agrovocMultispectral imageryen
dc.subject.agrovocImágenes multiespectraleses_PE
dc.subject.agrovocNormalized difference vegetation indexen
dc.subject.agrovocIndice normalizado diferencial de la vegetaciónes_PE
dc.subject.agrovocPrecision agriculturaes_PE
dc.subject.agrovocAgricultura de precisiónes_PE
dc.subject.agrovocTeledetecciónes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.06
dc.titleYield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Perues_PE
dc.typeinfo:eu-repo/semantics/article
google.citation.volume7

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Saravia_et-al_bean_multisprectal.pdf
Tamaño:
6.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Article (English)

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA