Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery
dc.contributor.author | Pizarro Carcausto, Samuel Edwin | |
dc.contributor.author | Pricope, Narcisa G. | |
dc.contributor.author | Figueroa Venegas, Deyanira Antonella | |
dc.contributor.author | Carbajal Llosa, Carlos Miguel | |
dc.contributor.author | Quispe Huincho, Miriam Rocío | |
dc.contributor.author | Vera Vilchez, Jesús Emilio | |
dc.contributor.author | Alejandro Méndez, Lidiana Rene | |
dc.contributor.author | Achallma Mendoza, Lino | |
dc.contributor.author | González Tovar, Izamar Estrella | |
dc.contributor.author | Salazar Coronel, Wilian | |
dc.contributor.author | Loayza, Hildo | |
dc.contributor.author | Cruz Luis, Juancarlos Alejandro | |
dc.contributor.author | Arbizu Berrocal, Carlos Irvin | |
dc.date.accessioned | 2023-08-31T17:37:23Z | |
dc.date.available | 2023-08-31T17:37:23Z | |
dc.date.issued | 2023-06-20 | |
dc.description.abstract | The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a computationally expensive procedure, taking days or weeks to obtain accurate results using a desktop workstation. To overcome these challenges, cloud-based solutions such as Google Earth Engine (GEE) have been used to analyze complex data with machine learning algorithms. In this study, we explored the feasibility of designing and implementing a digital soil mapping approach in the GEE platform using high-resolution reflectance imagery derived from a thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). We compared a suite of multispectral-derived soil and vegetation indices with in situ measurements of physical-chemical soil properties in agricultural lands in the Peruvian Mantaro Valley. The prediction ability of several machine learning algorithms (CART, XGBoost, and Random Forest) was evaluated using R2, to select the best predicted maps (R2 > 0.80), for ten soil properties, including Lime, Clay, Sand, N, P, K, OM, Al, EC, and pH, using multispectral imagery and derived products such as spectral indices and a digital surface model (DSM). Our results indicate that the predictions based on spectral indices, most notably, SRI, GNDWI, NDWI, and ExG, in combination with CART and RF algorithms are superior to those based on individual spectral bands. Additionally, the DSM improves the model prediction accuracy, especially for K and Al. We demonstrate that high-resolution multispectral imagery processed in the GEE platform has the potential to develop soil properties prediction models essential in establishing adaptive soil monitoring programs for agricultural regions. | es_PE |
dc.format | application/pdf | es_PE |
dc.identifier.citation | Pizarro, S.; Pricope, N. G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; ... & Arbizu, C. I. (2023). Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery. Remote Sensing, 15(12), 3203. doi: 10.3390/rs15123203 | es_PE |
dc.identifier.doi | https://doi.org/10.3390/rs15123203 | |
dc.identifier.issn | 2072-4292 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12955/2290 | |
dc.language.iso | eng | es_PE |
dc.publisher | MDPI | es_PE |
dc.publisher.country | CH | es_PE |
dc.relation.ispartof | urn:issn:2072-4292 | es_PE |
dc.relation.ispartofseries | Remote sensing | es_PE |
dc.rights | info:eu-repo/semantics/openAccess | es_PE |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | es_PE |
dc.source | Instituto Nacional de Innovación Agraria | es_PE |
dc.source.uri | Repositorio Institucional - INIA | es_PE |
dc.subject | Soil mapping | es_PE |
dc.subject | UAV | es_PE |
dc.subject | Google Earth Engine | es_PE |
dc.subject | Machine learning | es_PE |
dc.subject | Cloud computing | es_PE |
dc.subject.agrovoc | Soil surveys | es_PE |
dc.subject.agrovoc | Reconocimiento de suelos | es_PE |
dc.subject.agrovoc | Unmanned aerial vehicles | es_PE |
dc.subject.agrovoc | Vehículos aéreos no tripulados | es_PE |
dc.subject.agrovoc | Machine learning | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#4.01.06 | es_PE |
dc.title | Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery | es_PE |
dc.type | info:eu-repo/semantics/article | es_PE |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Pizarro_et-al_2023_soil_mapping.pdf
- Tamaño:
- 10.84 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Article (English)
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: