Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery

dc.contributor.authorPizarro Carcausto, Samuel Edwin
dc.contributor.authorPricope, Narcisa G.
dc.contributor.authorFigueroa Venegas, Deyanira Antonella
dc.contributor.authorCarbajal Llosa, Carlos Miguel
dc.contributor.authorQuispe Huincho, Miriam Rocío
dc.contributor.authorVera Vilchez, Jesús Emilio
dc.contributor.authorAlejandro Méndez, Lidiana Rene
dc.contributor.authorAchallma Mendoza, Lino
dc.contributor.authorGonzález Tovar, Izamar Estrella
dc.contributor.authorSalazar Coronel, Wilian
dc.contributor.authorLoayza, Hildo
dc.contributor.authorCruz Luis, Juancarlos Alejandro
dc.contributor.authorArbizu Berrocal, Carlos Irvin
dc.date.accessioned2023-08-31T17:37:23Z
dc.date.available2023-08-31T17:37:23Z
dc.date.issued2023-06-20
dc.description.abstractThe spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a computationally expensive procedure, taking days or weeks to obtain accurate results using a desktop workstation. To overcome these challenges, cloud-based solutions such as Google Earth Engine (GEE) have been used to analyze complex data with machine learning algorithms. In this study, we explored the feasibility of designing and implementing a digital soil mapping approach in the GEE platform using high-resolution reflectance imagery derived from a thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). We compared a suite of multispectral-derived soil and vegetation indices with in situ measurements of physical-chemical soil properties in agricultural lands in the Peruvian Mantaro Valley. The prediction ability of several machine learning algorithms (CART, XGBoost, and Random Forest) was evaluated using R2, to select the best predicted maps (R2 > 0.80), for ten soil properties, including Lime, Clay, Sand, N, P, K, OM, Al, EC, and pH, using multispectral imagery and derived products such as spectral indices and a digital surface model (DSM). Our results indicate that the predictions based on spectral indices, most notably, SRI, GNDWI, NDWI, and ExG, in combination with CART and RF algorithms are superior to those based on individual spectral bands. Additionally, the DSM improves the model prediction accuracy, especially for K and Al. We demonstrate that high-resolution multispectral imagery processed in the GEE platform has the potential to develop soil properties prediction models essential in establishing adaptive soil monitoring programs for agricultural regions.es_PE
dc.formatapplication/pdfes_PE
dc.identifier.citationPizarro, S.; Pricope, N. G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; ... & Arbizu, C. I. (2023). Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery. Remote Sensing, 15(12), 3203. doi: 10.3390/rs15123203es_PE
dc.identifier.doihttps://doi.org/10.3390/rs15123203
dc.identifier.issn2072-4292
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2290
dc.language.isoenges_PE
dc.publisherMDPIes_PE
dc.publisher.countryCHes_PE
dc.relation.ispartofurn:issn:2072-4292es_PE
dc.relation.ispartofseriesRemote sensinges_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectSoil mappinges_PE
dc.subjectUAVes_PE
dc.subjectGoogle Earth Enginees_PE
dc.subjectMachine learninges_PE
dc.subjectCloud computinges_PE
dc.subject.agrovocSoil surveyses_PE
dc.subject.agrovocReconocimiento de sueloses_PE
dc.subject.agrovocUnmanned aerial vehicleses_PE
dc.subject.agrovocVehículos aéreos no tripuladoses_PE
dc.subject.agrovocMachine learninges_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.06es_PE
dc.titleImplementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imageryes_PE
dc.typeinfo:eu-repo/semantics/articlees_PE

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Pizarro_et-al_2023_soil_mapping.pdf
Tamaño:
10.84 MB
Formato:
Adobe Portable Document Format
Descripción:
Article (English)

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA