Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru

dc.contributor.authorCarbajal Llosa, Carlos Miguel
dc.contributor.authorBarja , Antony
dc.contributor.authorPizarro Carcausto, Samuel Edwin
dc.date.accessioned2025-12-30T18:16:21Z
dc.date.available2025-12-30T18:16:21Z
dc.date.issued2025-11-06
dc.description.abstractIn agricultural systems, soil pH and electrical conductivity (EC) are crucial chemical properties that directly affect nutrient availability and microbial activity, but the challenging environment of the Peruvian Andes has limited research on their estimation. This study aimed to develop an ensemble learning method to predict soil pH and EC in Andean agroecosystems using environmental predictors. By using simple and weighted averaging, we developed a heterogeneous ensemble learning approach that integrates machine learning (ML) algorithms, including Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The weighted ensemble assigns weights to models based on their predictive accuracy, measured by R² from spatial cross-validation. Spatial patterns are noticeable, and pH displays greater spatial clustering than EC. Elevation was the most important predictor in ML models for both parameters. Ensemble models significantly outperformed individual models, with the weighted ensemble achieving R² >0.93 and reducing RMSE by approximately 72%. Among standalone models, RF and XGBoost performed best for pH, while SVM performed the best for EC. ANN models were the least effective. Uncertainty analysis indicated high confidence in pH predictions but moderate to high uncertainty in EC predictions, suggesting that EC is more challenging to predict. Ensemble models with optimized weighting provide robust and accurate mapping of spatially autocorrelated soil properties. The high-confidence pH maps are reliable for soil management decisions, while EC predictions, though more uncertain, effectively identify priority areas for future sampling and investigation.
dc.description.sponsorshipThis research was funded by the INIA project CUI 2487112 "Mejoramiento de los servicios de investigación y transferencia tecnológica en el manejo y recuperación de suelos agrícolas degradados y aguas para riego en la pequeña y mediana agricultura en los departamentos de Lima, Áncash, San Martín, Cajamarca, Lambayeque, Junín, Ayacucho, Arequipa, Puno y Ucayali". Acknowledgments: To the personnel of the Soil, Water, and Foliars Laboratory (LABSAF) at the Santa Ana Agrarian Experimental Station (EEA).
dc.formatapplication/pdf
dc.identifier.citationCarbajal Llosa, C., Barja, A., & Pizarro Carcausto, S. (2025). Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru. Frontiers in Soil Science, 5, 1673628. https://doi.org/10.3389/fsoil.2025.1673628
dc.identifier.doihttps://doi.org/10.3389/fsoil.2025.1673628
dc.identifier.issn2673-8619
dc.identifier.urihttp://hdl.handle.net/20.500.12955/2967
dc.language.isoeng
dc.publisherFrontiers Media S.A.
dc.publisher.countryCH
dc.relation.ispartofurn:issn:2673-8619
dc.relation.ispartofseriesFrontiers in Soil Science
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceInstituto Nacional de Innovación Agraria
dc.source.uriRepositorio Institucional - INIA
dc.subjectEnsemble learning
dc.subjectSpatial machine learning
dc.subjectDigital soil mapping
dc.subjectSoil pH
dc.subjectElectrical conductivity
dc.subjectAprendizaje conjunto
dc.subjectaprendizaje automático espacial
dc.subjectmapeo digital del suelo
dc.subjectpH del suelo
dc.subjectconductividad eléctrica.
dc.subject.agrovocPropiedad del suelo; Soil properties; Teledetección; Remote sensing; Modelo digital de superficie; Digital Surface models; Sistema de información geográfica; Geographic information systems; Análisis espacial; Spatial analysis; Perú; Peru.
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.04
dc.titleEnsemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru
dc.typeinfo:eu-repo/semantics/article

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Carbajal_et-al_2025_ensemble learning_digital mapping_electrical conductivity.pdf
Tamaño:
9.41 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA