Using UAV images and phenotypic traits to predict potato morphology and yield in Peru

dc.contributor.authorCcopi Trucios, Dennis
dc.contributor.authorOrtega Quispe, Kevin
dc.contributor.authorCastañeda Tinco, Italo
dc.contributor.authorRios Chavarria, Claudia
dc.contributor.authorEnriquez Pinedo, Lucia
dc.contributor.authorPatricio Rosales, Solanch
dc.contributor.authorOre Aquino, Zoila
dc.contributor.authorCasanova Nuñez-Melgar, David
dc.contributor.authorAgurto Piñarreta, Alex
dc.contributor.authorZúñiga López, Luz Noemí
dc.contributor.authorUrquizo Barrera, Julio
dc.date.accessioned2024-11-28T15:00:18Z
dc.date.available2024-11-28T15:00:18Z
dc.date.issued2024-10-24
dc.description.abstractPrecision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the prediction of morphological quality was less accurate, with Random Forest standing out as the most reliable model (R2 = 0.55 for circularity). Spectral data significantly improved the predictive capacity compared to agronomic data alone. We conclude that integrating spectral índices and multitemporal data into predictive models improved the accuracy in estimating yield and certain morphological traits, offering key opportunities to optimize agricultural management.
dc.formatapplication/pdf
dc.identifier.citationCcopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Rios-Chavarria,C.; Enriquez-Pinedo, L.; Patricio-Rosales, S.; Ore-Aquino, Z.; Casanova-Nuñez-Melgar, D.; Agurto-Piñarreta, A.; Zuñiga-López, N.; & Urquizo-Barrera, J. (2024). Using UAV images and phenotypic traits to predict potato morphology and yield in Peru. Agriculture, 14(11), 1876. doi: 10.3390/agriculture14111876
dc.identifier.doihttps://doi.org/10.3390/agriculture14111876
dc.identifier.issn2077-0472
dc.identifier.urihttp://hdl.handle.net/20.500.12955/2610
dc.language.isoeng
dc.publisherMDPI
dc.publisher.countryCH
dc.relation.ispartofurn:issn: 2077-0472
dc.relation.ispartofseriesAgriculture
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceInstituto Nacional de Innovación Agraria
dc.source.uriRepositorio Institucional - INIA
dc.subjectPrecision agriculture
dc.subjectRemote sensing
dc.subjectCrop monitoring
dc.subjectMachine learning
dc.subject.agrovocMachine learning
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.06
dc.titleUsing UAV images and phenotypic traits to predict potato morphology and yield in Peru
dc.typeinfo:eu-repo/semantics/article

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Ccopi_et-al_2024 Using_UAV_potato.pdf
Tamaño:
994.54 KB
Formato:
Adobe Portable Document Format
Descripción:
article

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA