Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru

dc.contributor.authorEnriquez Pinedo, Lucia Carolina
dc.contributor.authorOrtega Quispe, Kevin Abner
dc.contributor.authorCcopi Trucios, Dennis
dc.contributor.authorRios Chavarria, Claudia Sofía
dc.contributor.authorUrquizo Barrera, Julio
dc.contributor.authorPatricio Rosales, Solanch Rosy
dc.contributor.authorAlejandro Mendez, Lidiana Rene
dc.contributor.authorOliva Cruz, Manuel
dc.contributor.authorBarboza Castillo, Elgar
dc.contributor.authorPizarro Carcausto , Samuel Edwin
dc.date.accessioned2025-03-24T05:08:33Z
dc.date.available2025-03-24T05:08:33Z
dc.date.issued2025-03-06
dc.description.abstractRemote sensing is essential in precision agriculture as this approach provides high-resolution information on the soil's physical and chemical parameters for detailed decision making. Globally, technologies such as remote sensing and machine learning are increasingly being used to infer these parameters. This study evaluates soil fertility changes and compares them with previous fertilization inputs using high-resolution multispectral imagery and in situ measurements. A UAV-captured image was used to predict the spatial distribution of soil parameters, generating fourteen spectral indices and a digital surface model (DSM) from 103 soil plots across 49.83 hectares. Machine learning algorithms, including classification and regression trees (CART) and random forest (RF), modeled the soil parameters (N-ppm, P-ppm, K-ppm, OM%, and EC-mS/m). The RF model outperformed others, with R² values of 72% for N, 83% for P, 87% for K, 85% for OM, and 70% for EC in 2023. Significant spatiotemporal variations were observed between 2022 and 2023, including an increase in P (14.87 ppm) and a reduction in EC (-0.954 mS/m). High-resolution UAV imagery combined with machine learning proved highly effective for monitoring soil fertility. This approach, tailored to the Peruvian Andes, integrates spectral indices and field-collected data, offering innovative tools to optimize fertilization practices, address soil management challenges, and merge modern technology with traditional methods for sustainable agricultural practices.
dc.description.sponsorshipThe Ministry of Agrarian Development and Irrigation (MIDAGRI) of the Peruvian Government provided funding for this study through the project “Creación del servicio de agricultura de precisión en los Departamentos de Lambayeque, Huancavelica, Ucayali y San Martín 4 Departamentos" (grant number CUI 2449640). It also received support from the Vice-Rectorate for Research of the Universidad Nacional del Amazonas Toribio Rodríguez de Mendoza—UNTRM. Special thanks are extended to the collaborators involved in field data collection and assistants of the Precision Agriculture Project (CUI 2449640) as well as other research programs of the “Estación Experimental Agraria Santa Ana”, INIA.
dc.formatapplication/pdf
dc.identifier.citationEnriquez, L.; Ortega, K.; Ccopi, D.; Rios, C.; Urquizo, J.; Patricio, S.; Alejandro, L.; Oliva-Cruz, M.; Barboza, E.; Pizarro, S. Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru. AgriEngineering 2025, 7, 70. https://doi.org/10.3390/agriengineering7030070
dc.identifier.doihttps://doi.org/10.3390/agriengineering7030070
dc.identifier.urihttp://hdl.handle.net/20.500.12955/2681
dc.language.isoeng
dc.publisherMDPI
dc.publisher.countryCH
dc.relation.ispartofseriesAgriEngineering
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceInstituto Nacional de Innovación Agraria
dc.source.uriRepositorio Institucional - INIA
dc.subjectfertility soil mapping
dc.subjectCART
dc.subjectrandom forest
dc.subjectprecision agriculture
dc.subject.agrovocFertilidad del suelo; Cartografía; Teledetección; Agricultura de precisión
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.04
dc.titleDetecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru
dc.typeinfo:eu-repo/semantics/article

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Detecting Changes in Soil Fertility.pdf
Tamaño:
2.78 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA