Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Peru

dc.contributor.authorSaravia Navarro, David
dc.contributor.authorSalazar Coronel, Wilian
dc.contributor.authorValqui Valqui, Lamberto
dc.contributor.authorQuille Mamani, Javier Alvaro
dc.contributor.authorPorras Jorge, Rossana
dc.contributor.authorCorredor Arizapana, Flor Anita
dc.contributor.authorBarboza Castillo, Elgar
dc.contributor.authorVásquez Pérez, Héctor Vladimir
dc.contributor.authorArbizu Berrocal, Carlos Irvin
dc.coverage.spatialPerúes_PE
dc.date.accessioned2022-09-05T16:59:47Z
dc.date.available2022-09-05T16:59:47Z
dc.date.issued2022-05-17
dc.description.abstractEarly assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability in the farmer's economy. In this study we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using remotely sensed spectral vegetation indices (VI). A total of 10 VI (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. In the present study, highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA indicated a clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimate the performance, showing greater precision at 51 DAS. The use of RPAS to monitor crops allows optimizing resources and helps in making timely decisions in agriculture in Peru.es_PE
dc.description.tableofcontentsAbstract. 1. Introduction. 2. Materials and Methods. 3. Results. 4. Discussion. 5. Conclusions. References.es_PE
dc.formatapplication/pdfes_PE
dc.identifier.citationSaravia, D.; Salazar, W.; Valqui, L.; Quille, J.; Porras, R.; Corredor, F.; Barboza, E.; Vásquez, H. & Arbizu, C. (2022). Yield Predictions of Four Hybrids of Maize (Zea mays) using Multispectral Images Obtained from RPAS in the Coast of Peru. Preprints, 2022050231. doi: 10.20944/preprints202205.0231.v1es_PE
dc.identifier.doihttps://doi.org/10.20944/preprints202205.0231.v1
dc.identifier.journalPreprintses_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12955/1852
dc.language.isoenges_PE
dc.publisherMDPIes_PE
dc.publisher.countrySuizaes_PE
dc.relation.publisherversionhttps://doi.org/10.20944/preprints202205.0231.v1es_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectVegetation índiceses_PE
dc.subjectPrecision farminges_PE
dc.subjectHybrides_PE
dc.subjectPhenotypinges_PE
dc.subjectRemote sensinges_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.04.00es_PE
dc.titleYield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from RPAS in the coast of Perues_PE
dc.typeinfo:eu-repo/semantics/articlees_PE

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Arbizu-et-al_2022_Zea_mays.pdf
Tamaño:
1.28 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA