Examinando por Materia "Random Forest (RF)"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Cloud computing application for the analysis of land use and land cover changes in dry forests of Peru(International Information and Engineering Technology Association (IIETA), 2024-09-30) Barboza, Elgar; Salazar Coronel, Wilian; Gálvez Paucar, David; Valqui Valqui, Lamberto; Valqui, Leandro; Zagaceta, Luis H.; Gonzales, Jhony; Vásquez, Héctor V.; Arbizu, Carlos I.Dry forests are ecosystems of great importance worldwide, but in recent decades they have been affected by climate change and changes in land use. In this study, we evaluated land use and land cover changes (LULC) in dry forests in Peru between 2017 and 2021 using Sentinel-2 images, and cloud processing with Machine Learning (ML) models. The results reported a mapping with accuracies above 85% with an increase in bare soil, urban areas and open dry forest, and reduction in the area of crops and dense dry forest. Protected natural areas lost 2.47% of their conserved surface area and the areas with the greatest degree of land use impact are located in the center and north of the study area. The study provides information that can help in the management of dry forests in northern Peru.Ítem Cover and land use changes in the dry forest of Tumbes (Peru) using sentinel-2 and google earth engine data(MDPI, 2022-10-21) Barboza Castillo, Elgar; Salazar Coronel, Wilian; Gálvez Paucar, David; Valqui Valqui, Lamberto; Saravia Navarro, David; Gonzales, Jhony; Aldana, Wiliam; Vásquez Pérez, Héctor Vladimir; Arbizu Berrocal, Carlos IrvinDry forests are home to large amounts of biodiversity, are providers of ecosystem services, and control the advance of deserts. However, globally, these ecosystems are being threatened by various factors such as climate change, deforestation, and land use and land cover (LULC). The objective of this study was to identify the dynamics of LULC changes and the factors associated with the transformations of the dry forest in the Tumbes region (Peru) using Google Earth Engine (GEE). For this, the annual collection of Sentinel 2 (S2) satellite images of 2017 and 2021 was analyzed. Six types of LULC were identified, namely urban area (AU), agricultural land (AL), land without or with little vegetation (LW), water body (WB), dense dry forest (DDF), and open dry forest (ODF). Subsequently, we applied the Random Forest (RF) method for the classification. LULC maps reported accuracies greater than 89%. In turn, the rates of DDF and ODF between 2017 and 2021 remained unchanged at around 82%. Likewise, the largest net change occurred in the areas of WB, AL, and UA, at 51, 22, and 21%, respectively. Meanwhile, forest cover reported a loss of 4% (165.09 km2 ) of the total area in the analyzed period (2017–2021). The application of GEE allowed for an evaluation of the changes in forest cover and land use in the dry forest, and from this, it provided important information for the sustainable management of this ecosystem