Examinando por Materia "Random Forest"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley(Elsevier, 2024-03-29) Pizarro Carcausto, Samuel; Vera Vilchez, Jesús Emilio; Huamani, Joseph; Cruz, Juancarlos; Lastra, Sphyros; Solórzano Acosta, Richard; Verástegui Martínez, PatriciaQuality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environmental risks to ecosystems functions and human health. Hence the need know the spatial distribution of elements in soils, we mapped 25 elements, namely Ca, Mg, Sr, Ba, Be, K, Na, As, Sb, Se, Tl, Cd, Zn, Al, Pb, Hg, Cr, Ni, Cu, Mo, Ag, Fe, Co, Mn and V, using various geospatial datasets, such as remote sensing, climate, topography, soil data, and distance, to establish the spatial estimation models of spatial distribution trained trough machine learning model with a supervised dataset of 109 topsoil samples, into Google earth engine platform. Using R2, RMSE and MAE to assess the prediction accuracy. First Random Forest gave satisfactory results in predicting the distribution of analyzed elements in soil, being improved for some elements when adds more trees. Additionally, each element analyzed has a different combination of environmental covariates as predictor, mainly soil, climate, topographic and distance variables especially croplands close to rivers, with less importance for spectral variables. Our results suggest that is possible to identify polluted soils and improved regulations to minimize harm to environmental health and human health, for short-to-medium-term environmental risk control.Ítem Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation(Elsevier, 2024-07-28) Gómez Fernández, Darwin; Salas López, Rolando; Zabaleta Santisteban, Jhon Antony; Medina Medina, Angel J.; Goñas Goñas, Malluri; Silva López, Jhonsy O.; Oliva Cruz, Manuel; Rojas Briceño, Nilton B.Monitoring and evaluation of landscape fragmentation is important in numerous research areas, such as natural resource protection and management, sustainable development, and climate change. One of the main challenges in image classification is the intricate selection of parameters, as the optimal combination significantly affects the accuracy and reliability of the final results. This research aimed to analyze landscape change and fragmentation in northwestern Peru. We utilized accurate land cover and land use (LULC) maps derived from Landsat imagery using Google Earth Engine (GEE) and ArcGIS software. For this, we identified the best dataset based on its highest overall accuracy, and kappa index; then we performed an analysis of variance (ANOVA) to assess the differences in accuracies among the datasets, finally, we obtained the LULC and fragmentation maps and analyzed them. We generated 31 datasets resulting from the combination of spectral bands, indices of vegetation, water, soil and clusters. Our analysis revealed that dataset 19, incorporating spectral bands along with water and soil indices, emerged as the optimal choice. Regarding the number of trees utilized in classification, we determined that using between 10 and 400 decision trees in Random Forest classification doesn't significantly affect overall accuracy or the Kappa index, but we observed a slight cumulative increase in accuracy metrics when using 100 decision trees. Additionally, between 1989 and 2023, the categories Artificial surfaces, Agricultural areas, and Scrub/ Herbaceous vegetation exhibit a positive rate of change, while the categories Forest and Open spaces with little or no vegetation display a decreasing trend. Consequently, the areas of patches and perforated have expanded in terms of area units, contributing to a reduction in forested areas (Core 3) due to fragmentation. As a result, forested areas smaller than 500 acres (Core 1 and 2) have increased. Finally, our research provides a methodological framework for image classification and assessment of landscape change and fragmentation, crucial information for decision makers in a current agricultural zone of northwestern Peru.