Examinando por Materia "Dry forests"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Cloud computing application for the analysis of land use and land cover changes in dry forests of Peru(International Information and Engineering Technology Association (IIETA), 2024-09-30) Barboza, Elgar; Salazar Coronel, Wilian; Gálvez Paucar, David; Valqui Valqui, Lamberto; Valqui, Leandro; Zagaceta, Luis H.; Gonzales, Jhony; Vásquez, Héctor V.; Arbizu, Carlos I.Dry forests are ecosystems of great importance worldwide, but in recent decades they have been affected by climate change and changes in land use. In this study, we evaluated land use and land cover changes (LULC) in dry forests in Peru between 2017 and 2021 using Sentinel-2 images, and cloud processing with Machine Learning (ML) models. The results reported a mapping with accuracies above 85% with an increase in bare soil, urban areas and open dry forest, and reduction in the area of crops and dense dry forest. Protected natural areas lost 2.47% of their conserved surface area and the areas with the greatest degree of land use impact are located in the center and north of the study area. The study provides information that can help in the management of dry forests in northern Peru.Ítem Modeling the current and future habitat suitability of Neltuma pallida in the dry forest of northern Peru under climate change scenarios to 2100(John Wiley & Sons Inc., 2024-08-27) Barboza Castillo, Elgar; Bravo Morales, Nino; Cotrina Sanchez, Alexander; Salazar Coronel, Wilian; Gálvez Paucar, David; Gonzales, Jhony; Saravia Navarro, David; Valqui Valqui, Lamberto; Cárdenas Rengifo, Gloria Patricia; Ocaña Reyes, Jimmy Alcides; Cruz Luis, Juancarlos; Arbizu Berrocal, Carlos IrvinThe development of anthropic activities and climate change effects impact worldwide species' ecosystems and habitats. Habitats' adequate prediction can be an important tool to assess current and future trends. In addition, it allows strategies development for their conservation. The Neltuma pallida of the forest region in northern Peru, although very significant, has experienced a decline in recent years. The objective of this research is to evaluate the current and future distribution and conservation status of N. pallida in the Peruvian dry forest under climate change (Location: Republic of Peru). A total of 132 forest presence records and 10 variables (bioclimatic, topographic, and soil) were processed and selected to obtain the current and future distribution for 2100, using Google Earth Engine (GEE), RStudio, and MaxEnt. The area under the curve values fell within the range of 0.93–0.95, demonstrating a strong predictive capability for both present and future potential habitats. The findings indicated that the likely range of habitats for N. pallida was shaped by factors such as the average temperature of wettest quarter, maximum temperature of warmest month, elevation, rainfall, and precipitation of driest month. The main suitable areas were in the central regions of the geographical departments of Tumbes, Piura, and Lambayeque, as well as in the northern part of La Libertad. It is critical to determine the habitat suitability of plant species for conservation managers since this information stimulates the development of policies that favor sustainable use programs. In addition, these results can contribute significantly to identify new areas for designing strategies for populations conserving and recovering with an ecological restoration approach.