Examinando por Materia "Biodegradation"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Litter decomposition rates of four species of agroecological importance in the Peruvian coast and Andean highland(MDPI, 2024-09-13) Samaniego Vivanco, Tomás Daniel; Ramirez Aparicio, Jorge Adrian; Solórzano Acosta, Richard AndiCrop residue decomposition is fundamental for ecosystems, influencing carbon cycling, organic matter accumulation, and promoting plant development through nutrient release. Therefore, this study aimed to ascertain the rate of decomposition of four commonly cultivated crops (alfalfa, maize, avocado, and eucalyptus) along the northern coast of Lima (Huaral) and in the Ancash Mountain range (Jangas) areas. Decomposition rates were assessed using mass loss from decomposition bags measuring 15 × 10 cm, filled with 10–15 g of material tailored to each species, and buried at a depth of approximately 5 cm. Sampling occurred every three months over a year, totaling four sampling events with three replicates each, resulting in ninety-six experimental units. The findings demonstrate that the decomposition rates and the release of nutrients were markedly greater in Huaral for maize and avocado. In contrast, these rates were notably elevated in Jangas for alfalfa and eucalyptus. The leaf litter of avocado and eucalyptus (tree) had periods of accumulation and release of heavy metals such as Cd. The initial C/N ratio was one of the main factors related to the nutrient decomposition rate; in contrast, there were no significant relationships with soil properties at the study sites.Ítem Omics strategies targeting microbes with microplastic detection and biodegradation properties(CRC Press, 2024-04-12) Hualpa Cutipa, Edwin; Solórzano Acosta, Andi; Ravelo Machari, Yadira Karolay; Gomez Barrientos, Fiorella; Huayllacayan Mallqui, Jorge Johnny; Arquíñego Zárate, Fiorella Maité; León Chacón, Andrea; Alfaro Cancino, Milagros EstefaniPlastic-based products are ubiquitous in ecosystems due to their widespread use and utility in everyday life. Water matrices and winds are the primary means of plastic dispersal, which poses a threat to water consumption due to the presence of invisible contaminants. Microplastics (MPs) are the result of the physical, chemical, and biological degradation of bulky plastics, becoming a health hazard to living organisms. Microorganisms play a crucial role in the recycling and decomposition of harmful compounds. Studies have explored the properties of microorganisms in biodegradation and genetic manipulation to improve their metabolic properties. However, new strategies for detecting and understanding MPs’ metabolic versatility are needed. Various techniques have been developed to detect microbes and their biomolecules in various environments, including those not detectable using traditional culturing techniques. Omics approaches based on massive sequencing technologies (next generation sequencing) provide a better understanding of microbial cells and their characteristics. Strategies such as genomics, transcriptomics, metagenomics, proteomics, and metabolomics allow for precise molecular analysis, generating information about the genes a microorganism can harbor and the pattern of gene expression and protein synthesis under different conditions. This chapter aims to address the main omics strategies for detecting and identifying MPs and their biomolecules, including recent studies in humans.