Examinando por Autor "Urquizo Barrera, Julio"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru(MDPI, 2025-03-06) Enriquez Pinedo, Lucia Carolina; Ortega Quispe, Kevin Abner; Ccopi Trucios, Dennis; Rios Chavarria, Claudia Sofía; Urquizo Barrera, Julio; Patricio Rosales, Solanch Rosy; Alejandro Mendez, Lidiana Rene; Oliva Cruz, Manuel; Barboza Castillo, Elgar; Pizarro Carcausto , Samuel EdwinRemote sensing is essential in precision agriculture as this approach provides high-resolution information on the soil's physical and chemical parameters for detailed decision making. Globally, technologies such as remote sensing and machine learning are increasingly being used to infer these parameters. This study evaluates soil fertility changes and compares them with previous fertilization inputs using high-resolution multispectral imagery and in situ measurements. A UAV-captured image was used to predict the spatial distribution of soil parameters, generating fourteen spectral indices and a digital surface model (DSM) from 103 soil plots across 49.83 hectares. Machine learning algorithms, including classification and regression trees (CART) and random forest (RF), modeled the soil parameters (N-ppm, P-ppm, K-ppm, OM%, and EC-mS/m). The RF model outperformed others, with R² values of 72% for N, 83% for P, 87% for K, 85% for OM, and 70% for EC in 2023. Significant spatiotemporal variations were observed between 2022 and 2023, including an increase in P (14.87 ppm) and a reduction in EC (-0.954 mS/m). High-resolution UAV imagery combined with machine learning proved highly effective for monitoring soil fertility. This approach, tailored to the Peruvian Andes, integrates spectral indices and field-collected data, offering innovative tools to optimize fertilization practices, address soil management challenges, and merge modern technology with traditional methods for sustainable agricultural practices.Ítem Estimation of height and aerial biomass in Eucalyptus globulus plantations using UAV-LiDAR(Elsevier B.V., 2024-12-22) Enriquez Pinedo, Lucía; Ortega Quispe, Kevin; Ccopi Trucios, Dennis; Urquizo Barrera, Julio; Rios Chavarría, Claudia; Pizarro Carcausto, Samuel; Matos Calderon, Diana; Patricio Rosales, Solanch; Rodríguez Cerrón, Mauro; Ore Aquino, Zoila; Paz Monge, Michel; Castañeda Tinco, ItaloThe lack of precise methods for estimating forest biomass results in both economic losses and incorrect decisions in the management of forest plantations. In response to this issue, this study evaluated the effectiveness of using the DJI Zenmuse L1 LiDAR, mounted on a DJI Matrice 300 RTK UAV, to provide three-dimensional measurements of canopy structure and estimate the aboveground biomass of Eucalyptus globulus. Various LiDAR metrics were employed alongside field measurements to calibrate predictive models using multiple regression and machine learning algorithms. The results at the individual tree level show that RF is the most accurate model, with a coefficient of determination (R²) of 0.76 in the training set and 0.66 in the test set, outperforming Elastic Net (R² of 0.58 and 0.57, respectively). At the plot level, a multiple regression model achieved an R² of 0.647, highlighting LiDAR-derived metrics as key predictors. The findings revealed that the combination of LiDAR with advanced statistical techniques, such as multiple regression and Random Forest, significantly improves the accuracy of biomass estimation, surpassing traditional methods based on allometric equations. Therefore, the use of LiDAR in conjunction with machine learning represents an effective alternative for biomasss estimation, with great potential in such plantations and contribute to more sustainable exploitation of timber resources.Ítem Using UAV images and phenotypic traits to predict potato morphology and yield in Peru(MDPI, 2024-10-24) Ccopi Trucios, Dennis; Ortega Quispe, Kevin; Castañeda Tinco, Italo; Rios Chavarria, Claudia; Enriquez Pinedo, Lucia; Patricio Rosales, Solanch; Ore Aquino, Zoila; Casanova Nuñez-Melgar, David; Agurto Piñarreta, Alex Iván; Zúñiga López, Luz Noemí; Urquizo Barrera, JulioPrecision agriculture aims to improve crop management using advanced analytical tools.In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R2 > 0.74). In contrast, the prediction of morphological quality was less accurate, with Random Forest standing out as the most reliable model (R2 = 0.55 for circularity). Spectral data significantly improved the predictive capacity compared to agronomic data alone. We conclude that integrating spectral índices and multitemporal data into predictive models improved the accuracy in estimating yield and certain morphological traits, offering key opportunities to optimize agricultural management.