Examinando por Autor "Reategui, Keneth"
Mostrando 1 - 4 de 4
- Resultados por página
- Opciones de ordenación
Ítem Carbon stocks in coffee farms and secondary forest systems in the Peruvian Amazon rainforest(Research square, 2023-09-15) Vallejos Torres, Geomar; Gaona Jimenez, Nery; Ordoñez, Luis; Vallejos Torres, Andi; Mendoza Caballero, Wilfredo; Arévalo López, Luis Alberto; Saavedra Ramírez, Jorge; Macedo, Wilder; Reategui, Keneth; Baselly Villanueva, Juan Rodrigo; Marín, CésarSecondary forests and coffee cultivation systems with shade trees might have great potential for carbon sequestration as a means of climate change adaptation and mitigation. This study aimed to measure carbon stocks in coffee plantations under different managements and secondary forest systems in the Peruvian Amazon rainforest (San Martín Region). The carbon stock in secondary forest trees was estimated using allometric equations, while carbon stocks in soil, herbaceous biomass, and leaf litter were determined through sampling and laboratory analysis. The biomass carbon stock in secondary forests was 132.2 t/ha, while in coffee plantations with Inga sp. shade trees it was 118.2 t/ha. Carbon stocks were 76.5 t/ha in coffee with polyculture farming, and the lowest amount of carbon was found in coffee without shade trees (31.1 t/ha). The carbon sequestered by coffee plants in all agroforestry systems examined had an average of 2.65 t/ha, corresponding to 4.63 % of the total carbon sequestered, being the highest stored in the coffee system with Inga sp. shade trees. A higher content of glomalin-related soil proteins (GRSP) was found in coffee without shade trees, with 18.5 mg/g. This is evidence that Inga sp. is the most compatible model of shade system for coffee farms. We recommend the conservation of secondary forests due to the greater biomass and carbon storage, and establishing coffee plantations with Inga sp. shade trees for its integral benefits, such as climate change mitigation.Ítem Cutting propagation technique of mahogany (Swietenia macrophylla) in microtunnels from the Peruvian Amazon(2025-01-24) Vallejos Torres, Geomar; Gaona Jimenez, Nery; Ordoñez Sanchez, Luis; Garcia Gonzales, Patricia; Mendoza Caballero, Wilfredo; Saavedra Ramirez, Jorge; Macedo Cordova, Wilder; Reategui, Keneth; Baselly Villanueva, Juan Rodrigo; Marin, CesarSwietenia macrophylla is a forest species of great commercial value that is categorized as vulnerable in Peru. Therefore, the objective of this study is to optimize a protocol for cutting propagation of S. macrophylla using microtunnels in the San Martín, Peruvian Amazon. Three experiments were conducted: sterilization, which tested ethyl alcohol (EA), Tween-80 (T), carbendazim (CZ), and combinations; a rooting experiment with different substrates and doses of indole-3-butyric acid (IBA); and an acclimation experiment of rooted cuttings, with different shade coverage and relative humidity conditions. The lowest contamination of S. macrophylla cuttings (9.75%) was achieved with the combined EA-CZ treatment; this treatment resulted in the lowest necrosis (9.1%) and survival of 86.50%. The best responses in rooting, root biomass, and cutting survival were presented by the combination of sterilized sand with 3,000 mg L-¹ of IBA, with averages of 73.89%, 0.036 g, and 2.22 cm, respectively. The best acclimation was obtained under 80% shade and 60% relative humidity, with an average survival rate of 91.67%. The general results were successful; therefore, they could be a valuable tool for the rescue, conservation, and restoration of ecosystems with cloned S. macrophylla trees that are resilient to climate change.Ítem Estimates of Soil Organic Carbon in the Ojos de Agua and El Quinillal Forests in the Central Huallaga of Peru.(Wiley., 2024-10-05) Mendoza Lopez, Karla; Ordoñez Sanchez, Luis; Valdez Andia, Manuel Jesus; Lozano Chung, Andi; Garcia Gonzales, Patricia E.; Saavedra Ramirez, Jorge; Macedo Cordova, Wilder; Baselly-Villanueva, Juan Rodrigo; Reategui, Keneth; Gaona Jimenez, Nery; Vallejos Torres, GeomarThe Peruvian Amazon has experienced large losses of forest cover due to changes in land use, contributing to increases in CO2 in the atmosphere. This study estimated the organic carbon content of forest soil in two forests "Ojos de Agua" and "El Quinillal" in the Central Huallaga of Peru, establishing three types of cover: (i) primary, (ii) intervened, and (iii) deforested. For this purpose, 24 plots of 100 m² were established and samples were extracted at a depth of 0-20 cm. The effect of the type of forest cover on soil carbon (Organic Carbon-SOC, Inorganic Carbon-SIC, Saturated Carbon-SC, Critical Carbon-CC, Saturated Carbon Deficit-SCD, and Organic Carbon-OC) was analyzed by means of an Analysis of Variance, correlation. Likewise, the relationship between carbon (C) and soil properties was evaluated by principal component analysis and correlation network. The results indicated that the highest SOC averages were found in the primary forests of Ojos de Agua and El Quinillal with 3.54% and 2.51%. The lowest values were found in the deforested forests with 1.34% and 1.46%. The calculation of the saturated C levels of the soil showed an average of 28.63% ± 2.14% and the saturated carbon deficit of 26.63% ± 2.45%, whereas the critical threshold of C showed an average of 2.21% ± 0.18%. The highest SOC content found in the Ojos de Agua primary forest is due to the presence of dominant forest species such as Manilkara bidentata and Brosimum alicastrum. Likewise, the C deficit in the soils of the study area is very alarming because it is very close to saturation levels, especially in deforested forests.Ítem Soil organic carbon balance across contrasting plant cover ecosystems in the Peruvian Amazon(Instituto de Investigaciones Agropecuarias, INIA, 2023-10-31) Vallejos Torres, Geomar; Gaona Jimenez, Nery; Lozano, Andi; Paredes, Christopher I.; Lozano, Carlos M.; Alva Arévalo, Alberto; Saavedra Ramírez, Jorge; Arévalo López, Luis Alberto; Reategui, Keneth; Mendoza, Wilfredo; Baselly Villanueva, Juan Rodrigo; Marín, CésarThe Peruvian Amazon has been significantly affected by land use and climate change, decreasing decomposition processes, which cause a significant depletion of soil C stocks. In this study, we estimated soil organic C (SOC) mediated by different plant covers in coffee (Coffea arabica L.) plantations and secondary forests in several districts of the San Martín Region, Peru. We calculated the critical threshold, saturation point, and the organic C deficit of these Amazonian soils. The association between geography, soil physical-chemical characteristics, and SOC was estimated through principal component analysis. Across all sites of the study, SOC stock had an average value of 69.19 t ha-1, with 48.95 t ha-1 constituting inorganic C. The highest SOC stock (225.28 t ha-1) was observed under secondary forest in the Jepelacio district. The SOC stocks were positively correlated with altitude and CaCO3 content only in secondary forests. The current measured amount of organic C within 15 cm soil depth was 28.5 g C kg-1, which is very low and close to the critical threshold (20.6 g C kg-1) -estimated based on its clay and silt contents. Our SOC stocks measurements indicated a worrisome situation, as they are close to the critical threshold, which exposes this area to a greater and stronger degradation.