Examinando por Autor "Mendoza Caballero, Wilfredo"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Carbon stocks in coffee farms and secondary forest systems in the Peruvian Amazon rainforest(Research square, 2023-09-15) Vallejos Torres, Geomar; Gaona Jimenez, Nery; Ordoñez, Luis; Vallejos Torres, Andi; Mendoza Caballero, Wilfredo; Arévalo López, Luis Alberto; Saavedra Ramírez, Jorge; Macedo, Wilder; Reategui, Keneth; Baselly Villanueva, Juan Rodrigo; Marín, CésarSecondary forests and coffee cultivation systems with shade trees might have great potential for carbon sequestration as a means of climate change adaptation and mitigation. This study aimed to measure carbon stocks in coffee plantations under different managements and secondary forest systems in the Peruvian Amazon rainforest (San Martín Region). The carbon stock in secondary forest trees was estimated using allometric equations, while carbon stocks in soil, herbaceous biomass, and leaf litter were determined through sampling and laboratory analysis. The biomass carbon stock in secondary forests was 132.2 t/ha, while in coffee plantations with Inga sp. shade trees it was 118.2 t/ha. Carbon stocks were 76.5 t/ha in coffee with polyculture farming, and the lowest amount of carbon was found in coffee without shade trees (31.1 t/ha). The carbon sequestered by coffee plants in all agroforestry systems examined had an average of 2.65 t/ha, corresponding to 4.63 % of the total carbon sequestered, being the highest stored in the coffee system with Inga sp. shade trees. A higher content of glomalin-related soil proteins (GRSP) was found in coffee without shade trees, with 18.5 mg/g. This is evidence that Inga sp. is the most compatible model of shade system for coffee farms. We recommend the conservation of secondary forests due to the greater biomass and carbon storage, and establishing coffee plantations with Inga sp. shade trees for its integral benefits, such as climate change mitigation.Ítem Cutting propagation technique of mahogany (Swietenia macrophylla) in microtunnels from the Peruvian Amazon(2025-01-24) Vallejos Torres, Geomar; Gaona Jimenez, Nery; Ordoñez Sanchez, Luis; Garcia Gonzales, Patricia; Mendoza Caballero, Wilfredo; Saavedra Ramirez, Jorge; Macedo Cordova, Wilder; Reategui, Keneth; Baselly Villanueva, Juan Rodrigo; Marin, CesarSwietenia macrophylla is a forest species of great commercial value that is categorized as vulnerable in Peru. Therefore, the objective of this study is to optimize a protocol for cutting propagation of S. macrophylla using microtunnels in the San Martín, Peruvian Amazon. Three experiments were conducted: sterilization, which tested ethyl alcohol (EA), Tween-80 (T), carbendazim (CZ), and combinations; a rooting experiment with different substrates and doses of indole-3-butyric acid (IBA); and an acclimation experiment of rooted cuttings, with different shade coverage and relative humidity conditions. The lowest contamination of S. macrophylla cuttings (9.75%) was achieved with the combined EA-CZ treatment; this treatment resulted in the lowest necrosis (9.1%) and survival of 86.50%. The best responses in rooting, root biomass, and cutting survival were presented by the combination of sterilized sand with 3,000 mg L-¹ of IBA, with averages of 73.89%, 0.036 g, and 2.22 cm, respectively. The best acclimation was obtained under 80% shade and 60% relative humidity, with an average survival rate of 91.67%. The general results were successful; therefore, they could be a valuable tool for the rescue, conservation, and restoration of ecosystems with cloned S. macrophylla trees that are resilient to climate change.Ítem Forest land-use change affects soil organic carbon in tropical dry forests of the Peruvian Amazon(CSIC (Consejo Superior de Investigaciones Científicas), 2024-10-22) Vallejos Torres, Geomar; Lozano Chung, Andi; Ordoñez Sanchez, Luis; Garcia Gonzales, Patricia; Gaona Jimenez, Nery; Mendoza Caballero, Wilfredo; Macedo Cordova, Wilder; Saavedra Ramirez , Jorge; Baselly Villanueva, Juan Rodrigo; Marin, CesarAim of study: The loss of forest cover is a global problem that alters ecosystems, contributing to carbon emissions. This study measured the soil organic carbon (SOC) at different soil depth in tropical dry forests of the Huallaga Central in the Peruvian Amazon. Area of study: San Martín Region, Peruvian Amazon. Material and methods: A total of 24 plots of 100 m² were selected in primary (~200 years), intervened (~50 years since intervention), and deforested forests (10 years ago), with 120 soil samples collected across five depths. Soil texture (hydrometer), bulk density (cylinder method), SOC content, SOC density, and erodibility (K parameter) were calculated. Main results: SOC content in the 0-20 cm soil horizon was 79.5±21.3 t ha-¹ for the primary forest, 58.5±11.8 t ha-¹ for the intervened forest, and 41.8±10 t ha-¹ for the deforested forest. A soil erodibility K of 0.065 was observed for primary forests and 0.076 and 0.093 for intervened and deforested forests. In average, the SOC density obtained in this study was 7.6±5.1 t ha-¹ in the primary forest, 6.2±3.6 t ha-¹ in the intervened forest, and 4.7±2.7 in the deforested forest. Research highlights: Primary forests had the highest SOC content and SOC density, followed by intervened and deforested forests, while the opposite pattern was found for soil erodibility. These patterns were especially marked in the first 40 cm of soil depth.