Examinando por Autor "Medina Medina, Angel J."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation(Elsevier, 2024-07-28) Gómez Fernández, Darwin; Salas López, Rolando; Zabaleta Santisteban, Jhon Antony; Medina Medina, Angel J.; Goñas Goñas, Malluri; Silva López, Jhonsy O.; Oliva Cruz, Manuel; Rojas Briceño, Nilton B.Monitoring and evaluation of landscape fragmentation is important in numerous research areas, such as natural resource protection and management, sustainable development, and climate change. One of the main challenges in image classification is the intricate selection of parameters, as the optimal combination significantly affects the accuracy and reliability of the final results. This research aimed to analyze landscape change and fragmentation in northwestern Peru. We utilized accurate land cover and land use (LULC) maps derived from Landsat imagery using Google Earth Engine (GEE) and ArcGIS software. For this, we identified the best dataset based on its highest overall accuracy, and kappa index; then we performed an analysis of variance (ANOVA) to assess the differences in accuracies among the datasets, finally, we obtained the LULC and fragmentation maps and analyzed them. We generated 31 datasets resulting from the combination of spectral bands, indices of vegetation, water, soil and clusters. Our analysis revealed that dataset 19, incorporating spectral bands along with water and soil indices, emerged as the optimal choice. Regarding the number of trees utilized in classification, we determined that using between 10 and 400 decision trees in Random Forest classification doesn't significantly affect overall accuracy or the Kappa index, but we observed a slight cumulative increase in accuracy metrics when using 100 decision trees. Additionally, between 1989 and 2023, the categories Artificial surfaces, Agricultural areas, and Scrub/ Herbaceous vegetation exhibit a positive rate of change, while the categories Forest and Open spaces with little or no vegetation display a decreasing trend. Consequently, the areas of patches and perforated have expanded in terms of area units, contributing to a reduction in forested areas (Core 3) due to fragmentation. As a result, forested areas smaller than 500 acres (Core 1 and 2) have increased. Finally, our research provides a methodological framework for image classification and assessment of landscape change and fragmentation, crucial information for decision makers in a current agricultural zone of northwestern Peru.Ítem Optimizing landfill site selection using fuzzy-AHP and GIS for sustainable urban planning(Salehan Institute of Higher Education, 2024-06-01) Zabaleta Santisteban, Jhon Antony; Salas López, Rolando; Rojas Briceño, Nilton B.; Gómez Fernández, Darwin; Medina Medina, Angel J.; Tuesta Trauco, Katerin M.; Rivera Fernandez, Abner S.; Lévano Crisóstomo, José; Oliva Cruz, Manuel; Silva López, Jhonsy O.Careful landfill selection with minimal environmental impact is vital for urban planners. This study aims to identify suitable sites for controlled landfills using Fuzzy-AHP integrated with Remote Sensing and GIS, considering a 20-year projection of population and solid waste generation. Initially, twelve sub-criteria were identified, grouped into environmental, socio-economic, and physical categories, and then weighted using paired comparison matrices involving nine experts. The sub-criteria were rasterized and classified into four suitability levels. The weighted overlay of sub-criteria maps generated a territorial suitability model. Within the Alto Utcubamba Commonwealth (Amazonas, Peru), 0.069%, 41.70%, 66.934%, 0.20%, and 12.4% of the territory are suitable, moderately suitable, less suitable, unsuitable, and restricted, respectively, for landfill establishment. Subsequently, 16 highly suitable sites were selected based on the required area (S4 polygons ≥ 0.505 ha) in line with the projected solid waste generation over 20 years. Of the 16 selected areas, only 15 met the shape index. The model showed high accuracy (AUC = 0.784) during validation. Furthermore, this study provides a comprehensive framework for making decisions about waste management in developing countries, enhancing understanding of key factors in selecting landfill sites. It also offers a deeper insight into global and local factors that determine the suitability of landfill sites.