Examinando por Autor "Cabanillas, Billy"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Metabolomic profile and discrimination of white quinoa seeds from Peru based on UHPLC-HRMS and multivariate analysis(International Association for Cereal Science and Technology, 2021-09) Cabanillas, Billy; Espichán, Fabio; Estrada Zúniga, Rigoberto; Neyra Valdez, Edgar; Rojas, R.In the present work, an untargeted metabolomic approach based on ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC–HRMS) was performed for the discrimination of 25 accessions of white quinoa from main production zones of Peru. From the fingerprint analysis, a total of eighty-four metabolites were tentatively identified based on their accurate mass measurements and MS/MS data. Among them, forty-six compounds are reported here for the first time in C. quinoa (eight phenolics, one ecdysteroid, and thirty-seven saponins), twenty-four of them would correspond to new structures. Principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA) were used to analyze the metabolomic data. As a result, the samples were distributed into two groups. The compounds contributing to the differences between these groups were identified by S-plot analysisÍtem Pharmacological validation of Solanum mammosum L. as an anti-infective agent: Role of solamargine(El Sevier, 2021-07-31) Cabanillas, Billy; Chassagne, François; Vásquez Ocmín, Pedro; Tahrioui, Ali; Chevalier, Sylvie; Vansteelandt, Marieke; Triastuti, Asih; Amasifuen Guerra, Carlos Alberto; Fabre, Nicolas; Haddad, MohamedEthnopharmacological relevance: Fungal and bacterial infections remain a major problem worldwide, requiring the development of effective therapeutic strategies. Solanum mammosum L. (Solanaceae) (“teta de vaca”) is used in traditional medicine in Peru to treat fungal infections and respiratory disorders via topical application. However, the mechanism of action remains unknown, particularly in light of its chemical composition. Materials and methods: The antifungal activity of TDV was determined against Trichophyton mentagrophytes and Candida albicans using bioautography-TLC-HRMS to rapidly identify the active compounds. Then, the minimum inhibitory concentration (MIC) of the fruit crude extract and the active compound was determined to precisely evaluate the antifungal activity. Additionally, the effects of the most active compound on the formation of Pseudomonas aeruginosa biofilms and pyocyanin production were evaluated. Finally, a LC-HRMS profile and a molecular network of TDV extract were created to characterize the metabolites in the fruits' ethanolic extract. Results: Bioautography-TLC-HRMS followed by isolation and confirmation of the structure of the active compound by 1D and 2D NMR allowed the identification solamargine as the main compound responsible for the anti-Trichophyton mentagrophytes (MIC = 64 μg mL−1) and anti-Candida albicans (MIC = 64 μg mL−1) activities. In addition, solamargine led to a significant reduction of about 20% of the Pseudomonas aeruginosa biofilm formation. This effect was observed at a very low concentration (1.6 μg mL−1) and remained fairly consistent regardless of the concentration. In addition, solamargine reduced pyocyanin production by about 20% at concentrations of 12.5 and 50 μg mL−1. Furthermore, the LC-HRMS profiling of TDV allowed us to annotate seven known compounds that were analyzed through a molecular network. Conclusions: Solamargine has been shown to be the most active compound against T. mentoagrophytes and C. albicans in vitro. In addition, our data show that this compound affects significantly P. aeruginosa pyocyanin production and biofilm formation in our conditions. Altogether, these results might explain the traditional use of S. mammosum fruits to treat a variety of fungal infections and respiratory disorders.