Sustainable Forestry (2022) Volume 5 Issue 1 doi:10.24294/sf.v5i1.1621 Original Research Article Composition, structure and ecological importance of Moraceae in a residual forest of Ucayali, Peru Fred C. Ramírez1*, Gumercindo A. Castillo1, Ymber Flores2, Octavio F. Galván1, Luisa Riveros1, Lyanna H. Sáenz3 1 Universidad Nacional Intercultural de la Amazonía (UNIA), Pucallpa, Peru. E-mail: fredc.ramirez.g@gmail.com 2 Instituto Nacional de Innovación Agraria (INIA), Pucallpa, Peru. 3 Universidade do Estado do Amazonas (UEA), Manaus, Brazil. ABSTRACT Species of the Moraceae family are of great economic, medicinal and ecological importance in Amazonia. Howev- er, there are few studies on their diversity and population dynamics in residual forests. The objective was to determine the composition, structure and ecological importance of Moraceae in a residual forest. The applied method was descrip- tive and consisted of establishing 16 plots of 20 m × 50 m (0.10 ha), in a residual forest of the Alexánder von Humboldt substation of the National Institute of Agrarian Innovation-INIA, Pucallpa, department of Ucayali, where individuals of arboreal or hemi-epiphytic habit, with DBH ≥ 2.50 cm, were evaluated. The floristic composition was represented by 33 species, distributed in 12 genera; five species not recorded for Ucayali were found. Structurally, the family was repre- sented by 138 individuals/ha with a horizontal distribution similar to an irregular inverted “J”. However, there were different horizontal structures among species. It was determined that 85% of the species were in diameter class I (2.50 to 9.99 cm), being the most abundant Pseudolmedia laevis (Ruiz & Pav.) J.F. Macbr. (41.88 individuals/ha); and the most dominant were Brosimum utile (Kunth) Oken (1.71 m2⁄ha) and Brosimum alicastrum subsp. bolivarense (Pittier) C.C.Berg (0.90 m2/ha). Likewise, P. laevis and B. utile were the most ecologically important. The information from the present research will allow the establishment of a baseline, which can be used to propose the management of Moraceae in residual forests in the same study area. Keywords: Residual Forest; Abundance; Dominance; IVI; New Records ARTICLE INFO 1. Introduction Received: 4 April 2022 Peru has an arboreal richness of 4,618 species, grouped in 148 Accepted: 22 May 2022 families[1], which represents an incomparable opportunity and an urgent Available online: 1 June 2022 priority for floristic research. In addition, it is considered one of the COPYRIGHT most biologically diverse countries in the world[2]. However, large for- est areas remain unexplored[3], and records are still incomplete and Copyright © 2022 Fred C. Ramírez, et al. [1,4] EnPress Publisher LLC. This work is li- fragmented . Moraceae presents considerable abundance and species censed under the Creative Commons At- richness[5-7], which influences it to be considered ecologically important tribution-NonCommercial 4.0 International License (CC BY-NC 4.0). in the different forests of Amazonia [8-13]. Recent studies found that https://creativecommons.org/licenses/by-nc/ Brosimum utile (Kunth) Oken is the species with the greatest ecological 4.0/ weight, at 107 masl in Colombia [13]; while, in Ecuador, Ficus cuatra- casana Dugand dominates the horizontal space, between 601 to 1,000 [14] masl . In Peru, the Moraceae family is represented by 19 genera, 128 species, with the genus Ficus being the most diverse with 102 species and 20 subspecies [1,15-17], which has been complemented by the discov- ery of new species and new reports for the Peruvian flora[18,19], which 62 together group all the names recognized to date; Based on topographic charts, the study area while, for the Ucayali region there are a total of 58 was preliminarily defined where, due to the degree species and 6 subspecies[4]. of forest fragmentation, 16 sampling units of 0.10 The Moraceae are of economic importance ha (20 m × 50 m) were selectively located in an al- mainly for the value of their wood[3,20,21], being the titudinal range from 211 to 286 m following the most used species, in primary processing, Brosi- methodology of Calvi[6] (Figure 1). Each woody mum utile subsp. ovatifolium (Ducke) C.C. Berg individual of arboreal or hemi-epiphytic habit, be- “Panguana”, Maquira coriacea (H. Karst.) C.C. longing to the Moraceae family, with diameter Berg “Capinurí” and Clarisia racemosa Ruiz & Pav. at breast height (DBH) ≥ 2.50 cm was evaluated. “Mashonaste, Tulpay”[22]. In addition, there are spe- The herborization protocol of Bridson and For- cies with medicinal[20,23,24] and food use[25]. The man[34] was used to collect and transfer the samples. fruits produced by several species are indispensable 2.3 Taxonomic identification for numerous species of vertebrate frugivores, which significantly influences forest dynamics[26-28]. A review was made of the Moraceae collec- Other authors mention that Moraceae are among the tions from the Alexander von Humboldt Experi- top ten families, in terms of number of tree spe- mental Annex, located in the Forest Herbarium of cies[1], with Pseudolmedia laevis (Ruiz & Pav.) J.F. INIA-Pucallpa, as well as virtual catalogs, special- Macbr. being the fourth most abundant species in ized bibliography and databases: The Plant List the Amazon[29]; however, Licona et al.[30] indicate (http://www.theplantlist.org), Missouri Botanical that there are not many studies on the dynamics of Garden (http://www.tropicos.org), Global Biodiver- Amazonian forests and the ecology of their species. sity Information Facility-GBlF (https://www.gbif. Likewise, Calvi[6] points out that one of the main org), NYBG Steere Herbarium factors affecting the distribution and species rich- (http://sweetgum.nybg.org) and the Field Museum ness of the Moraceae family in the Madidi National (https://plantidtools.fieldmuseum.org). Subsequent- Park in Bolivia is the conservation status of the for- ly, the identification was corroborated at the Her- ests. barium Selva Central Oxapampa (HOXA), biologi- The objective of this study was to know the cal station of the Missouri Botanical Garden, composition, structure and ecological importance of located in Oxapampa. Finally, the exsiccatae were Moraceae in a residual forest of the Alexander von deposited in the Biological Depository of IN- Humbolt substation of the National Institute of IA-Pucallpa. Agrarian Innovation Ucayali (Peru). 2. Materials and methods 2.1 Study area The work was developed in a residual primary forest at the Alexander von Humboldt substation of Figure 1. Diagram of the plot used for the study of Moraceae in a residual forest. INIA, Von Humboldt district, in the province of Padre Abad, department of Ucayali (Peru), between 2.4 Data analysis 8°49′31.7′′S and 75°3′19.5′′W. The study sector be- To represent the floristic composition, the spe- longs to the lowland rainforest Ecozone[31] and is cies existing at the site were considered[35-37]. To physiographically undulating (profile with regular calculate sampling efficiency, a species accumula- waves of 5 to 10 m in height) with good drainage[32]. tion curve was elaborated using the non-parametric It has an estimated precipitation of 3,600 mm and CHAO 2 estimator[38], which considers the distribu- the average temperature is 26 °C[33]. tion of species by sampling[39]. The analysis was 2.2 Species inventory performed using Estimates v.9.1.0 [40]. 63 The horizontal structure for the 16 plots (1.6 ha) was represented by the number of individuals per diameter class and the abundance of spe- cies; basal area was also calculated to know the dis- tribution of the family and species domi- nance[36,37,41]. The data were grouped into the following diameter classes: I (2.50 to 9.99 cm), II (10 to 19.99 cm), III (20 to 29.99 cm), IV (30 to 39.99 cm), V (40 to 49.99 cm), VI (50 to 59.9 cm), VII (60 to 69.99 cm), VIII (70 to 79.99 cm), IX (80 to 89.99 cm), X (90 to 99.99 cm), XI (100 to 109.99 cm), XII (110 to 119.99 cm), XIII (120 to 120.99 Figure 2. Accumulation curve of observed and expected species cm) and XIV (130 to 139.99 cm). of the Moraceae family in a residual forest. Ecological importance was determined by Five species are new records for the Ucayali calculating the species Importance Value Index (IVI) [42] region: Ficus americana subsp. guianensis (Desv. expressed as a percentage , the formula is ex Ham.) C.C. Berg, Ficus schultesii Dugand, Ficus shown below: ursina Standl., Ficus tonduzii Standl. vel. sp. afí, IVI = IVIj = AbRj + FRj + DoRj and Perebea guianensis subsp. hirsuta C.C. Berg. Where: Relative abundance: AbR j =100×Abj / ΣAbj 3.2 Horizontal structure of the family Mo- Relative Frequency: FR =100×F / ΣF raceae j j j Relative dominance: DoR =100×Do / ΣDo In 1.6 ha, 221 individuals were recorded and j j j Being: evaluated, 138 individuals/ha from 2.50 cm DBH; Abj: Total number of individuals of species j in while from 10 cm DBH the density was 41.25 indi- all plots. viduals/ha. The average DBH was 13.32 cm and the Fj: Number of plots where species j is present. maximum was 136 cm. The individuals were Doj: Total basal area of species j in all plots. grouped in 11 of the 14 diameter classes considered for the structural analysis, showing an irregular 3. Results discetaneous diameter distribution similar to an in- verted “J” (Figure 4). 3.1 Floristic composition of the family Mo- Species with complete discetal structures were raceae Pseudolmedia laevis (Ruiz & Pav.) J.F. Macbr. and In the 16 sampling plots (1.6 ha), 33 species Poulsenia armata (Miq.) Standl.; while Brosimum were identified, while according to CHAO 2 the lactescens (S. Moore) C.C. Berg, Clarisia biflora expected species were 44 (Figure 2). Accordingly, Ruiz & Pav, Clarisia racemosa Ruiz & Pav., the richness (S) observed represented 75% of the Brosimum acutifolium subsp. obovatum (Ducke) species that constitute the residual forest. C.C. Berg, Brosimum multinervium C.C. Berg and The species composition was distributed in 12 Brosimum utile (Kunth) Oken showed irregular genera: Batocarpus, Brosimum, Clarisia, Ficus, discetal structures. On the other hand, Ficus maxi- Helicostylis, Maquira, Naucleopsis, Perebea, ma Mill. vel. sp. aff., F. americana sbsp. guianensis, Poulsenia, Pseudolmedia, Sorocea and Trophis. Pseudolmedia macrophylla Trécul, Brosimum ali- Three genera presented the highest richness: Ficus castrum subsp. bolivarense (Pittier) C.C. Berg and (8 species), Brosimum (6 species) and Perebea (4 Perebea mollis subsp. mollis showed bimodal species), grouping 54.55% of the total number of structures (Figure 5). species (Figure 3). 64 Figure 3. Richness of genera of the Moraceae family in a residual forest. Figure 4. Irregular inverted horizontal structure of species of the Moraceae family in a residual forest. Figure 5. Species of the Moraceae family with bimodal horizontal structures in a residual forest. 65 Another group of species were distributed only longipedunculata C.C. Berg, Sorocea steinbachii in classes I and II. Helicostylis tomentosa (Poepp. & C.C. Berg, Naucleopsis ulei (Warb.) Ducke and Endl.) Rusby, Perebea angustifolia (Poepp. & Endl.) Maquira calophylla (Poepp. & Endl.) C.C. Berg C.C. Berg and Pseudolmedia laevigata Trécul pre- presented 1.88, 2.50, 4.38 and 5.63 individuals/ha sented horizontal structures of discetaneous ap- in class I, respectively. On the other hand, F. ursina pearances; while, Brosimum guianense (Aubl.) Hu- and F. schultesii were distributed in classes III and ber and Batocarpus costaricensis Standl. & L.O. VI, with 0.63 individuals/ha each; on the other hand, Williams showed horizontal structures with bimodal Ficus insipida subsp. insipida and Ficus popenoei appearances. Standl. presented 0.63 individuals/ha each in class 3.3 Abundance of species VII. The six most abundant species were: Pseu- 3.4 Basal area dolmedia laevis (41.88 individuals/ha), Brosimum The total basal area of the species evaluated utile (11.25 individuals/ha), Clarisia biflora (8.75 was 5.81 m2/ha. The distribution, by diameter class individuals/ha), Poulsenia armata (8.75 individu- of the species, showed a discontinuous increase in als/ha) and C. racemosa (6.25 individuals/ha), rep- the last classes (Figure 6). The genus Brosimum resenting 55.7% of the total number of individuals. represented 61.1% of the total basal area (3.55 The species that were present only in class I m2/ha). A co-dominance of species was found, the and were represented by only one individual (0.63 first was Brosimum utile with 1.71 m2/ha and the individual/ha) were: Ficus tonduzii vel. sp. aff., Fi- second was B. alicastrum subsp. bolivarense with cus paraensis (Miq.) Miq, Perebea guianensis 0.89 m2/ha, despite being represented by only one subsp. hirsuta, Naucleopsis glabra Spruce ex Pittier individual in class I and another in class X. Both and Sorocea briquetii J.F. Macbr. While Perebea species represented 44.80% of the total basal area. Figure 6. Cumulative distribution of basal areas by diameter class of the Moraceae family in a residual forest. Table 1. Ecological importance of species of the Moraceae family in a residual forest Species AbA AbR FA FR DoA DoR IV (300%) IVI (100%) Pseudolmedia laevis (Ruiz & Pav.) J.F. Macbr. 67 30.32 0.88 12.50 0.71 7.62 50.44 16.81 Brosimum utile (Kunth) Oken 18 8.14 0.63 8.93 2.73 29.34 46.42 15.47 Brosimum alicastrum subsp bolivarense (Pittier) C.C. 3 1.36 0.19 2.68 1.45 15.47 19.51 6.50 Berg Brosimum acutifolium subsp. obovatum (Ducke) C.C. Berg 6 2.71 0.38 5.36 0.66 7.11 15.19 5.06 Clarisia racemosa Ruiz & Pav. 10 4.52 0.50 7.14 0.26 2.84 14.51 4.84 Ciarisia biflora Ruiz & Pav. 14 6.33 0.44 6.25 0.17 1.84 14.42 4.81 66 Table 1. (Continued) Species AbA AbR FA FR DoA DoR IV (300%) IVI (100%) Brosimum multinervium C.C. Berg 7 3.17 0.19 2.68 0.61 6.59 12.44 4.15 Poulsenia armata (Miq.) Standl. 14 6.33 0.31 4.46 0.12 1.32 12.12 4.04 Pseudolmedia macrophylla Trécul 4 1.81 0.19 2.68 0.51 5.44 9.92 3.31 Perebea mollis (Poepp. & Endl.) Huber subsp. mollis 6 2.71 0.31 4.46 0.19 2.02 9.20 3.07 Maquira calophylla (Poepp. & Endl.) C.C. Berg 9 4.07 0.31 4.46 0.03 0.34 8.88 2.96 Brosimum lactescens (S. Moore) C.C. Berg 6 2.71 0.25 3.57 0.20 2.13 8.41 2.80 Naucleopsis ulei (Warb.) Ducke 7 3.17 0.31 4.46 0.01 0.09 7.72 2.57 Helicostylis tomentosa (Poepp. & Endl.) Rusby 7 3.17 0.25 3.57 0.05 0.57 7.31 2.44 Ficus maxima Mill. vel. sp. aff. 2 0.90 0.13 1.79 0.34 3.66 6.35 2.12 Ficus insipida Willd. subsp. insipida 11 0.45 0.06 0.89 0.38 4.12 5.47 1.82 Perebea angustifolia (Poepp. & Endl.) C.C. Berg 55 2.26 0.19 2.68 0.05 0.51 5.45 1.82 Trophis cancana (Pittier) C.C. Berg 9 4.07 0.06 0.89 0.02 0.22 5.18 1.73 Ficus popenoei Standl. 1 0.45 0.06 0.89 0.32 3.48 4.83 1.61 Sorocea steinbachii C.C. Berg 4 1.81 0.19 2.68 0.01 0.08 4.57 1.52 Pseudolmedia laevigata Trécul 3 1.36 0.19 2.68 0.01 0.12 4.16 1.39 Ficus americana subsp. guianensis (Desv. ex Ham.) C.C. Berg 2 0.90 0.13 1.79 0.12 1.32 4.01 1.34 Ficus schultesii Dugand 1 0.45 0.06 0.89 0.21 2.31 3.66 1.22 Perebea longipedunculata C.C. Berg 3 1.36 0.13 1.79 0.00 0.02 3.17 1.06 Brosimum guianense (Aubl.) Hu- ber 2 0.90 0.13 1.79 0.03 0.37 3.06 1.02 Batocarpus costaricensis Standl. & L.O. Williams 2 0.90 0.13 1.79 0.01 0.15 2.84 0.95 Sorocea guilleminiana Gaudich. 2 0.90 0.06 0.89 0.03 0.31 2.11 0.70 Ficus ursina Standl. 1 0.45 0.06 0.89 0.03 0.37 1.72 0.57 Perebea guianensis Aubl. subsp. hirsuta 1 0.45 0.06 0.89 0.01 0.08 1.42 0.47 Naucleopsis glabra Spruce ex Pittier 1 0.45 0.06 0.89 0.00 0.04 1.39 0.46 Ficus tonduzii Standl. vel. sp. aff. 1 0.45 0.06 0.89 0.00 0.04 1.38 0.46 Sorocea briquette J.F. Macbr. 1 0.45 0.06 0.89 0.00 0.04 1.38 0.46 Ficus paraensis (Miq.) Miq. 1 0.45 0.06 0.89 0.00 0.03 1.38 0.46 Total 221 100.00 7.00 100.00 9.31 100.00 300.00 100.00 Note: AbA (Absolute abundance), AbR (Relative abundance), FA (Absolute frequency), FR (Relative frequency), DoA (Absolute dominance), DoR (Relative dominance), IVI (Importance Value Index = AbR + FR + DoR). 3.5 Ecological importance of the species of and dominance (29.34). The species B. alicastrum the Moraceae family subsp. bolivarense and B. acutifolium subsp. obo- The ecological weight of the first six species vatum were also important, but due to their domi- represented 53.49% of the IVI. The most important nance (15.47) and (7.11), respectively; while were Pseudolmedia laevis and Brosimum utile, the Clarisia racemosa and C. biflora were important former due to its abundance (30.32) and frequency due to their abundance (4.52) and frequency (6.25) (12.50); while, the latter due to its abundance (8.14) (Table 1). 67 et al.[41], undisturbed forests generally show an ac- 4. Discussion cumulation of basal area in the last class. Orozco and Brumér[43]4.1 Floristic composition explain that if a species has the larg- est basal area of a site, it is dominating, even if it is When studying the composition of Moraceae, not abundant, as was the case of Brosimum utile and in the Madidi forest in Bolivia, between 100 to 250 B. alicastrum subsp. bolivarense. m altitude, using plots of 20 m × 50 m and 10 m × 100 m, with a sampling area of 4.9 ha, 24 species 4.3 Ecological importance and 11 genera were found[6], being this richness Brosimum utile was the second species with lower than that obtained in the present study, 33 the greatest ecological weight, after Pseudolmedia species and 12 genera in 1.6 ha in a residual prima- laevis, obtaining a similar result to the study con- ry forest. As in the investigations of Calvi[6] and ducted by Mena-Mosquera et al.[13]. Licona et al.[30] Marcelo-Peña and Reynel[12], Ficus was the genus point out that there is not much information on the that reported the highest floristic richness. dynamics of Amazonian forests and the ecology of 4.2 Horizontal structure their species. On the other hand, we do not know other biological processes associated with richness According to Louman et al.[41], this occurs be- and diversity, such as the effects caused by dispers- cause some diameter classes have few or many in- ers and competition between plants, which could dividuals. However, this type of distribution help to understand many concepts. showed that the forest has a good reserve of small individuals, at the family level, in class I, 70% of 5. Conclusions the total number of individuals and 85% of the spe- cies, which is abundant enough to replace large in- The residual forest of the Alexander von dividuals. Lam-Precht[35] mentions that the afore- Humboldt substation of INIA harbors an important mentioned distribution guarantees the sustainable richness of species of the Moraceae family, with yield of humid tropical forests, so it can be affirmed five new reports for Ucayali. that the harvesting of all or most of the species of There are different horizontal structures be- the Moraceae family in the forest under study tween species belonging to the same family, with could be carried out in compliance with the ecolog- notorious implications for the identification and ical dimension of sustainable forest management. planning of silvicultural interventions; suggesting Pseudolmedia laevis was the most abundant species, for this type of forest, that management be diversi- thus agreeing with ter Steege et al.[29]. fied (or multiple use) in terms of species utilization The complete discetaneous structures of and the generation of timber and non-timber goods. Pseudolmedia laevis and Poulsenia armata indicate The differences in structure and ecological that these species will not present problems to re- importance are a manifestation of the individuality generate; whereas, species with irregular dis- of each species; however, Pseudolmedia laevis and cetaneous structures (such as Brosimum lactescens, Brosimum utile are noteworthy because they pre- Clarisia biflora, C. racemosa, B. acutifolium subsp. sented the highest ecological weights. obovatum, B. multinervium and B. utile) and Conflict of interest with bimodal structures (such as Ficus maxima vel. sp. afí, F. americana sbsp. guianensis, Pseu- The authors declared no conflict of interest. dolmedia macrophylla, Brosimum alicastrum subsp. bolivarense and Perebea mollis subsp. mollis) References will need large clearings to regenerate[41]. 1. Vásquez R, Rojas R, Monteagudo A, et al. Catalog The discontinuous increase in the basal area of of Peruvian trees. Revista Qeuña 2018; 9(1): 1–167. 2. MINAM (Ministerio del Ambiente, Perú). Moraceae in the last classes reflects the degree of Plan/Estrategia: Estrategia Nacional de Diversidad intervention in the study area. According to Louman Biológica al 2021 (Plan de Acción 2014–2018) 68 (Spanish) [Plan/Strategy: National Biodiversity 13. Mena-Mosquera VE, Andrade HJ, TorresTorre JJ. Strategy to 2021 (Action Plan 2014–2018)]. Lima, Floristic composition, structure and diversity of the Peru: Ministerio del Ambiente; 2014. p. 114. tropical pluvial forest of the sub-basin of the Mun- 3. Honorio E, Reynel C. Vacíos en la colección de la guidó River, Quibdó, Chocó, Colombia. Entramado flora de los bosques húmedos del Perú (Spanish) 2020; 16(1): 204–215. [Gaps in the collection of the flora of Peruvian doi: 10.18041/1900-3803/entramado.1.6109. rainforests]. Lima: Universidad Nacional Agraria la 14. Torres Navarrete B, Garcia WO. Composición flo- Molina, Herbario de la Facultad de Ciencias rística de la familia Moraceae, como fuente de car- Forestales; 2003. p. 87. bon aéreo en la gradiente altitudinal de un bosque 4. Flores Y. Árboles nativos de la region Ucayali, Perú siempreverde, piemontano de la Amazonia Ecuato- (Spanish) [Native trees of the Ucayali region, Peru]. riana, año 2018 (Spanish) [Floristic composition of 1st ed. Pucallpa, Peru: Instituto Nacional de Inno- the Moraceae family, as a source of aerial carbon in vación Agraria; 2018. p. 354. the altitudinal gradient of an evergreen, piedmont 5. Mostacedo B; Balcazar J, Montero JC. Tipos forest of the Ecuadorian Amazon, year 2018] [Mas- de bosque, diversidad y composición florística en la ter’s thesis]. Quevedo, Ecuador: Universidad Tec- Amazonia sudoeste de Bolivia (Spanish) [Forest nica Estatal de Quevedo; 2019. p. 95. types, diversity and floristic composition in the 15. Brako L, Zarucchi JL. Catálogo de las southwestern Amazon of Bolivia]. Ecología en Bo- Angiospermas y Gimnospermas del Perú (Spanish) livia 2006; 41(2): 99–116. [Catalog of the Angiosperms and Gymnosperms of 6. Calvi SP. Diversidad y distribución de la familia Peru]. Missouri: Missouri Botanical Garden; 1993. p. Moraceae en los bosques de la Región Madidi, La 1–1286. Paz, Bolivia (Spanish) [Diversity and distribution of 16. Ulloa Ulloa C, Zarucchi JL, León B. Diez años de the Moraceae family in the forests of the Madidi Adiciones a la Flora del Perú: 1993–2003 (Spanish) Region, La Paz, Bolivia] [PhD thesis]. La Paz: [Ten Years of Additions to the Flora of Peru: 1993– Universidad Mayor de San Andrés; 2013. p. 67. 2003]. Arnaldoa 2004; Sp. Ed.: 1–242. 7. García C, Marín H, Moriones D, et al. Structure, 17. Ulloa Ulloa C, Acevedo-Rodríguez P, Beck S, et al. composition and diversity of the natural forests of 2017. An integrated assessment of the Vascular plant Smurfit kappa cardboard of Colombia: Popayán and species of the Americas. Science 2017; 358(6370): cajibío. Biotecnología en el Sector Agropecuario y 1614–1617. doi: 10.1126/science.aao0398. Agroindustrial 2014; 12(1): 10–19. 18. Berg C, Homeier J. Three new species of South 8. Neill D, Killeen T. Curso de dendrología tropical en American Moraceae. Blumea-biodiversity, evolution la Amazonía Boliviana, Valle de Sacta (Spanish) and biogeography of plants 2010; 55(2): 196–200. [Tropical dendrology course in the Bolivian Amazon, doi: 10.3767/000651910X527707. Sacta Valley]. La Paz: Herbario Nacional de Bolivia; 19. Mitidieri N, Cardoso L, Damián A, et al. A new 1991. p. 60. species and a new record of Ficus sect. Pharmaco- 9. Nebel G, Dragsted J, Vanclay JK. Estructura y sycea (Moraceae) from Peru. Systematic Botany composición florística del bosque de la llanura alu- 2020; 45(1): 91–95. vial inundable de la Amazonía Peruana: II El soto- doi: 10.1600/0363636464420X15801369352342. bosque de la resting (Spanish) [Structure and floris- 20. Reynel C, Pennington TD, Pennington RT, et al. tic composition of the alluvial floodplain forest of Árboles del Perú (Spanish) [Trees of Peru]. Lima: the Peruvian Amazon: II The understory of the Jesús Bellido M.; 2016. p. 1047. resting forest]. Folia Amazónica 2000; 10(1–2): 21. SERFOR (Servicio Nacional Forestal y de Fauna 151–181. doi: 10.24841/fa.v10i1-2.246. Silvestre, Perú). Anuario forestal y de fauna silvestre 10. Cardona V, Fuentes A; Cayola L. Las moráceas de la 2019 (Spanish) [Forestry and wildlife yearbook región de Madidi, Bolivia (Spanish) [The moraceae 2019]. Lima: SERFOR; 2000. p. 132. of the Madidi region, Bolivia]. Ecología en Bolivia 22. FAO (Organización de las Naciones Unidas para la 2005; 40(3): 212–264. Alimentación y la Agricultura). La Industria de la 11. Araujo-Murakami A, Bascopé F, Cardona V, et al. Madera en el Perú: Identificación de las barreras y Composición florística y estructura del bosque oportunidades para el comercio interno de productos amazónico preandino en el sector del Arroyo Negro, responsables de madera, provenientes de fuentes Parque Nacional Madidi, Bolivia (Spanish) [Floris- sostenibles y legales, en las MIPYMEs del Perú tic composition and structure of the pre-Andean (Spanish) [The timber industry in Peru: Identifica- Amazonian forest in the Arroyo Negro sector, Ma- tion of barriers and opportunities for domestic trade didi National Park, Bolivia]. Ecología en Bolivia of responsible wood products from sustainable and 2005; 40(3): 281–303. legal sources in Peruvian MSMEs]. Lima: FAO; 12. Marcelo-Peña JL, Reynel C. Diversity patterns and 2018. p. 178. floristic composition of permanent evaluative plots 23. Mejía K, Rengifo E. Plantas medicinales de uso in the peruvian central forest. Rodriguésia 2014; popular en la Amazonía peruana (Spanish) [Medic- 65(1): 35–47. inal plants for popular use in the Peruvian Amazon]. doi: 10.1590/S2175-78602014000100003. 2nd ed. Lima, Peru: IIAP (Instituto de Investi- 69 gaciones de la Amazonía Peruana); 2000. p. 286. region in the Peruvian Amazone [Master’s thesis]. 24. Mass W, Campera M. Árboles medicinales: Turrialba, Costa Rica: CATIE; 1994. p. 165. Conocimientos y usos en la cuenca baja del río 33. Angulo W, Fasabi H. Fenología de 10 especies Marañón, zona de amortiguamiento de la Reserva forestales para determinar la influencia del cambio Nacional Pacaya Samiria (Spanish) [Medicinal trees: climático por efecto del calentamiento global: cinco Knowledge and uses in the lower basin of the Ma- años de estudio (2012–2016) (Spanish) [Phenology rañón River, buffer zone of the Pacaya Samiria Na- of 10 forest species to determine the influence of tional Reserve]. Iquitos: MINAM; 2011. p. 81. climate change due to the effect of global warming: 25. Spichiger R, Méroz J, Loizeau P, et al. Contribución Five years of study (2012–2016)]. Pucallpa: INIA; a la flora en la Amazonía peruana: Los árboles del 2016. p. 31. Arboretum de Jenaro Herrera. Volumen II: Linaceae 34. Bridson D, Forman L. The herbarium handbook. a Palmae (Spanish) [Contribution to the flora in the Kew: Royal Botanic Gardens; 1992. p. 93. Peruvian Amazon: The trees of the Jenaro Herrera 35. Lamprecht H. Silvicultura en los trópicos. Los eco- Arboretum. Volume II: Linaceae to Palmae]. Geneva, sistemas forestales en los bosques tropicales y sus Switzerland: IIAP (Instituto de Investigaciones de la especies arbóreas. Posibilidades para un Amazonía Peruana); 1990. p. 359. aprovechamiento sostenido (Spanish) [Silviculture 26. Shanahan M, Samson SO, Estephen SG, et al. in the tropics. Forest ecosystems in tropical forests Fig-eating by vertebrate frugivores: A global review. and their tree species. Possibilities for a sustainable Biological Reviews 2001; 76(4): 529–572. use]. Carrillo A (translator). Eschborn, Federal Re- doi: 10.1017/S146479310100576010. public of Germany: GTZ; 1990. p. 335. 27. Kanashiro LJ. Etología de Forrajeo de Ate- 36. Finegan B. El potencial de manejo de los bosques les belzebuth chamek (Atelidae: Atelinae) en el húmedos secundarios neotropicales de las tier- Parque Nacional del Manu durante la temporada ras bajas (Spanish) [The management potential of seca 2005 (Spanish) [Foraging ethology of Ate- lowland neotropical secondary moist forests]. Luján les belzebuth chamek (Atelidae: Atelinae) in Manu R (translator). Turrialba: CATIE; 1992. p. 37. National Park during the 2005 dry season.] [PhD 37. Mostacedo B, Fredericksen T. Manual de thesis]. Lima: Universidad Nacional Agraria La métodos básicos de muestreo y análisis en ecología Molina; 2009. vegetal (Spanish) [Manual of basic methods of 28. Alegria DO. Influencia de la disponibilidad de frutos sampling and analysis in plant ecology]. Santa Cruz (familia Moraceae) en las dinámicas de fisión-fusión de la Sierra: BOLFOR; 2000. p. 87. de Ateles chamek (Humboldt, 1812) en el Parque 38. Colwell RK, Chang XM, Jing C. Interpolando, ex- Nacional de Manu (Spanish) [Influence of fruit trapolando y comparando las curvas de acumulación availability (Moraceae family) on fission-fusion de especies basadas en su incidencia (Spanish) [In- dynamics of Ateles chamek (Humboldt, 1812) in terpolating, extrapolating and comparing species Manu National Park] [PhD thesis]. Lima: Univer- accumulation curves based on their occurrence]. sidad Nacional Agraria La Molina; 2019. p. 75. Ecology 2005; 85(10): 2717–2727. 29. ter Steege H, Pitman N, Sabatier D, et al. 2013. 39. Magurran EA. Measuring biological diversity. Ox- Hyperdominance in the Amazonian tree flora. Sci- ford: Blackwell Publishing; 2004. p. 256. ence 2013; 342(6156): 245–337. 40. Colwell RK. Estimates 9.1.0 user’s guide: Statistical doi: 10.1126/science.1243092. estimation of species richness and shared species 30. Licona JC, Peña M, Mostacedo B. Composición from samples. Connectitut: University of Connect- florística, estructura y dinámica de un bosque icut; 2013. amazónico aprovechado a diferentes intensidades en 41. Louman B, Quirós D, Nilsson M. Silvicultura Pando, Bolivia (Spanish) [Floristic composition, de bosques latifoliados húmedos con énfasis en structure and dynamics of an Amazonian forest América Central (Spanish) [Silviculture of harvested at different intensities in Pando, Bolivia]. moist broadleaf forests with emphasis on Central Santa Cruz, Bolivia: Instituto Boliviano de Investi- America]. Turrialba: CaTIE; 2001. p. 265. gación Forestal; 2007. p. 60. 42. Curtis JT, McIntosh RP. An upland forest continuum 31. FAO (Naciones Unidas para la Alimentación y la in the prairieforest border region of Wisconsin. Agricultura, Italia); SERFOR (Servicio Nacional Ecological Society of America 1951; 32(3): 476– Forestal y de Fauna Silvestre, Perú). Nues- 496. doi: 10.2307/1931725. tros bosques en números: Primer reporte del Inven- 43. Orozco L, Brumér L. Inventarios forestales tario Nacional Forestal y de Fauna Silvestre (Span- para bosques latifoliados en América Central ish) [Our forests in numbers: First report of the (Spanish) [Forest inventories for broadleaved forests National Forest and Wildlife Inventory] [Internet]. in Central America]. Turrialba: CATIE; 2002. p. Lima: FAO, SERFOR; 2017. Available from: 264. https://sinia.minam.gob.pe/documentos/nuestros-bo sques-numeros. 32. Vidaurre HE. Balance of silvicultural experience with cedrelinga catenaeformis Ducke in the Pucallpa 70