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Abstract: Quinoa is an Andean crop that stands out as a high-quality protein-rich and gluten-free
food. However, its increasing popularity exposes quinoa products to the potential risk of adulteration
with cheaper cereals. Consequently, there is a need for novel methodologies to accurately characterize
the composition of quinoa, which is influenced not only by the variety type but also by the farming
and processing conditions. In this study, we present a rapid and straightforward method based on
matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to
generate global fingerprints of quinoa proteins from white quinoa varieties, which were cultivated
under conventional and organic farming and processed through boiling and extrusion. The mass
spectra of the different protein extracts were processed using the MALDIquant software (version
1.19.3), detecting 49 proteins (with 31 tentatively identified). Intensity values from these proteins
were then considered protein fingerprints for multivariate data analysis. Our results revealed reliable
partial least squares-discriminant analysis (PLS-DA) classification models for distinguishing between
farming and processing conditions, and the detected proteins that were critical for differentiation.
They confirm the effectiveness of tracing the agricultural origins and technological treatments of
quinoa grains through protein fingerprinting by MALDI-TOF-MS and chemometrics. This untargeted
approach offers promising applications in food control and the food-processing industry.

Keywords: boiling; conventional farming; extrusion; MALDIquant; MALDI-TOF-MS; multivariate
data analysis; organic farming; proteins; quinoa

1. Introduction

Quinoa (Chenopodium quinoa Willd.) is an important crop originally from the Andes
Mountains in Peru, Bolivia, and Chile. This “Golden Grain” is in global demand for
its exceptional nutritional and immuno-nutritional properties [1–4]. Quinoa is a rich
source of gluten-free proteins containing all essential amino acids, important minerals,
omega-3 fatty acids, polyphenols, and vitamins, along with other interesting bioactive
compounds [3,5]. Among these compounds, saponins exhibit haemolytic activity and
induce bitterness. However, they are effectively removed from the seeds using various
methods, such as washing and abrasion [6]. Quinoa is resilient to environmental stress
and poor soil, making cultivation a viable option worldwide [3,7,8]. In recent years, the
cultivation of organic quinoa has experienced a dramatic increase, because it is perceived
as safer, healthier, and more environmentally friendly than quinoa from conventional
farming [9–11]. White quinoa, known for its high productivity, is the most widely cultivated
commercial variety [12].
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The extensive exploration of technological approaches has been undertaken to improve
the nutritional and functional potential of quinoa-based products, aiming to enhance the
potential benefits of incorporating quinoa into the diet. The typical technological methods
described in the literature can be classified based on whether they involve heat energy input
during processing. Thermal treatment methods typically include extrusion, drying, and
boiling, under or without pressure. Conversely, nonthermal treatment methods involve
high hydrostatic pressure, atmospheric pressure, cold plasma, and sonication [2]. Among
thermal treatment methods, extrusion is considered a versatile and efficient technique
for processing instant foods with diverse textures and shapes. This process involves the
application of heat, mechanical energy, and pressure. During extrusion, the starch in
quinoa seeds undergoes gelatinization, and the proteins denature, improving digestibility.
However, it is noteworthy that the protein and lipid content in extruded quinoa typically
diminishes due to the formation of protein–lipid or starch–lipids complexes, resulting in
a remarkable decrease in solubility [2,13]. On the other hand, boiling can also enhance
digestibility and bioavailability while promoting sensory properties like palatability, taste,
flavour, and the development of soft and mushy textures. However, cooking also affects the
composition of numerous chemical constituents, including proteins, amino acids, vitamins,
and minerals [14].

Research on the impact of agricultural production methods and technological treat-
ments on quinoa proteins remains very limited [15–19]. These studies are a necessary
part of the quality control of quinoa grains and their derived products, which face the
threat of adulteration with cheaper cereals [20–23]. Food adulteration is a widespread
malpractice aimed at maximizing economic benefits, posing potential risks to human
health by either depriving consumers of vital nutrients or exposing them to allergenic or
toxic compounds [20,24–26]. Consequently, there is an urgent need to develop analytical
methods for quinoa characterization aimed at enhancing quality control, food-safety, and
fraud-prevention programs.

Different analytical techniques assisted by chemometrics for data deconvolution, mul-
tivariate data analysis, and classification have been described for the characterization of
quinoa [20–23,27–32]. Several authors have demonstrated the potential of using infrared or
fluorescence spectroscopic techniques to obtain global profiles of quinoa flour components
for tracing adulteration [20–23]. Other authors have targeted the volatile fraction of com-
pounds in quinoa flour for the same purpose, using headspace–gas chromatography–ion
mobility spectrometry (HS-GC-IMS) [27]. Alternatively, we have been focused on the
global profiling of quinoa proteins, which has proven to be an efficient way to character-
ize commercial varieties of quinoa grains [28–31]. We have developed different methods
based on capillary electrophoresis and liquid chromatography with ultraviolet absorp-
tion spectrophotometric detection (CE-UV and LC-UV, respectively) [28,29], shotgun pro-
teomics using label-free liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS) [30], and matrix-assisted laser desorption ionization time-of-flight mass spec-
trometry (MALDI-TOF-MS) [31]. In particular, the MALDI-TOF-MS method proved to be
highly convenient, enabling the rapid, straightforward, and reliable differentiation of com-
mercial quinoa grains based on the proteins detected in their characteristic mass spectra [31].
Additionally, the most relevant proteins for discriminating between different quinoa grains
were tentatively identified based on their molecular masses (Mr), comparing them with
the experimental proteome map obtained by LC-MS/MS shotgun proteomics [30]. Protein
identification not only enhances the reliability of differentiation but also provides valuable
information, such as the potential bioactivity of the present proteins [32].

In this study, we extend the previously developed MALDI-TOF-MS global profiling
approach to discriminate among commercial quinoa grain varieties, aiming to investigate
the impact of agricultural production methods and technological treatments on quinoa
proteins. We employ MALDI-TOF-MS to obtain global profiles of quinoa proteins from
white quinoa varieties cultivated under two distinct farming practices (organic and conven-
tional) and subjected to different processing methods (boiling and extrusion). Subsequently,
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MALDIquant and chemometrics are applied for efficient data processing and multivari-
ate analysis. Additionally, the method tentatively identifies the most critical proteins for
discrimination within the analysed samples, providing insights that may have important
nutritional, functional, and technological implications. Ultimately, this information can
contribute to the improvement of agricultural and food production practices.

2. Materials and Methods
2.1. Chemicals

All the chemicals were of at least analytical reagent grade. Hydrochloric acid (37% (v/v)),
sodium hydroxide (≥99.0%, pellets), boric acid (≥99.5%), water (LC-MS grade), acetonitrile
(ACN, LC-MS grade), acetone (99.8%), sinapinic acid (SA, ≥99.0%), and trifluoroacetic acid
(TFA, 99.0%) were provided by Merck (Darmstadt, Germany). Milli-Q ultra-pure water system
(Millipore, Molsheim, France) was employed for water purification.

2.2. Samples

The investigation involved triplicate analysis of four distinct white quinoa variety
samples, including raw quinoa (seeds and grains), two crop conditions (conventional and
organic), and two processing conditions (boiling and extrusion). The quinoa varieties,
namely Quillahuaman INIA (Quillahuaman, V1), INIA 433-Santa Ana/AIQ/FAO (Santa
Ana, V2), INIA 431-Altiplano (Altiplano, V3), and Salcedo INIA (Salcedo, V4), were pro-
vided by the National Institute of Agrarian Innovation (INIA) from Lima, Peru. These
four quinoa varieties were cultivated in both conventional and organic conditions in La
Molina (Lima, Peru) (latitude 12◦04′36′′ S, longitude 76◦ 56′43′′ W, altitude 241 m above
sea level (masl)) and Omas (Lima, Peru) (latitude 12◦33′25.6′′ S, longitude 76◦19′9′′ W,
altitude 1227 masl), respectively. They were grown in the same year (2018) to minimize
environmental effects.

Conventional soil fertilization was performed using a mixture containing urea, potas-
sium chloride, and diammonium phosphate, while organic soil fertilization employed
‘Bokashi’, a fermented food-based fertilizer comprising organic materials such as animal
dung, yeast, and molasses. Quinoa seeds were processed using a scarifier machine (Vul-
cano, Lima, Peru) to separate the grain from the pericarp. To eliminate saponins responsible
for the bitter flavour, the obtained quinoa grains were washed three times for 5 min in
a quinoa-to-water 1:10 (m/v) bath at room temperature (rt). Finally, the washed quinoa
grains were dried at 40 ◦C in an oven (Memmert, Schwabach, Germany) and stored in a
dry environment at rt.

2.3. Extrusion Process

White quinoa grains from the four varieties, cultivated under both conventional
and organic farming methods, were preconditioned with water (12–14% moisture) to
achieve optimal heat transfer during the extrusion process and ensure starch gelatinization.
Extrusion took place in a co-rotating twin-screw extruder (Inbramaq, São Paulo, Brazil) with
a total barrel length of 960 mm, a screw diameter of 30 mm, and a cylindrical die diameter
of 10 mm. The extruder featured three independent zones: a feeding zone, a heating zone,
and a die zone. Temperature settings were as follows: the feeding zone was maintained
at 30 ◦C, gradually increasing to 40 ◦C and then 50 ◦C. The heating zone had variable
temperatures of 70 ◦C, 85 ◦C, and 100 ◦C, while the die zone was set at temperatures of
100 ◦C, 110 ◦C, and 125 ◦C. The grain feed rate was established at 14 kg/h, with a screw
speed of 800 rpm. The cut-off frequency was configured at 17 Hz, keeping the retention
time between 10 and 15 s. After the extrusion process, the extruded grains were cooled for
15 min and subsequently stored in polyethylene (PE) bags at rt until further analysis.

2.4. Boiling Process

Another batch of white quinoa grain samples was milled utilizing a laboratory ultra-
centrifugal mill (Restch, Schwabach, Germany) at 18,000 rpm for 30 s. The milling process
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involved sieving through a mesh with a 0.5 mm opening. The resulting sieved flour was
dispersed in water before boiling to prevent lump formation, ensuring a homogeneous
mixture. This mixture was then boiled in a cooking pot at 100 ◦C for 20 min, maintaining
a flour-to-water mixture ratio of 1:20 (m/v) with continuous stirring. Finally, the boiled
quinoa was cooled for 20 min, dried at 40 ◦C for 72 h, and subsequently stored in PE bags
at rt until further analysis.

2.5. Sample Preparation

Protein extraction from raw (i.e., seeds and grains), boiled, and extruded quinoa from
conventional and organic farming was carried out in triplicate for each variety (V1, V2,
V3, and V4), resulting in a total of 96 quinoa protein extracts. The extraction protocol was
as described in our previous work [30], with some modifications. Briefly, 250 mg of each
sample was mixed with 2 mL of water and 39 µL of 1 M NaOH (final pH of 10.0) using
a vortex Genius 3 (Ika®, Staufen, Germany) for 3 h at rt. The resulting suspension was
centrifuged at 23,000× g for 60 min at 4 ◦C in a cooled Rotanta 460 centrifuge (Hettich
Zentrifugen, Tuttlingen, Germany). The supernatant was collected, and the pH value was
adjusted to 5.0 with 22 µL of 1 M HCl. After centrifugation at 30,000× g for 30 min at 4 ◦C,
precipitated proteins were resuspended in 1 mL of a solution of 60 mM H3BO3 (pH adjusted
to 9.0 with NaOH). The resulting solution was filtered through 0.22 µm nylon filters (MSI,
Westboro, MA, USA) before analysis. All pH measurements were made using a Crison
2002 potentiometer and a Crison electrode 52-03 (Crison Instruments, Barcelona, Spain).

The estimation of protein content in the quinoa extracts was determined spectropho-
tometrically utilizing a capillary electrophoresis (CE) instrument equipped with a diode
array detector (7100 CE, Agilent Technologies, Waldbronn, Germany). Three independent
replicates of samples, obtained from seed, grain, boiled, and extruded quinoa from conven-
tional and organic farming, were injected at 50 mbar for 10 s in a fused silica capillary of
58 cm total length (LT), 50 µm internal diameter (i.d.), and 365 µm outer diameter (o.d.)
(Polymicro Technologies, Phoenix, AZ, USA). A calibration curve was established using
BSA standard solutions at 100 to 1000 mg·L−1. Flow injection experiments were performed
without voltage, with the sample plug mobilized through applications of 50 mbar pressure
after the injection. Absorbance measurements were taken at 214 nm within the region of
the detected protein peaks.

2.6. MALDI-TOF-MS

For the preparation of the protein extracts for MALDI-TOF-MS analyses, MF-Millipore®

membrane filters (Merck) and Milli-Q water were employed for desalting [31]. Briefly, 10 µL
of protein extracts were deposited onto the membrane filter, and desalting was achieved by
dialyzing with water for 45 min at rt. The dialyzed extracts were then collected and stored
at −20 ◦C until the analyses.

A 4800 MALDI TOF/TOF mass spectrometer (Applied Biosystems, Waltham, MA,
USA) was employed to acquire mass spectra in mid-mass positive mode within a
3000–25,000 m/z range. Data acquisition and processing were conducted using the 4000 Se-
ries ExplorerTM (Applied Biosystems, version 3.5) and Data Explorer® (Applied Biosystems,
version 4.5) software. Sample-MALDI matrix mixtures were freshly prepared as described
in our previous work [31]. Briefly, the procedure involved manually spotting, droplet-
by-droplet, onto a steel MALDI plate 1 µL of a 27 mg·mL−1 SA solution in 99:1 (v/v)
acetone:water, 1 µL of dialyzed sample solution, an additional 1 µL of dialyzed sample
solution (for enhanced homogeneity), and finally 1 µL of a 10 mg·mL−1 SA solution in
50:50 (v/v) ACN:water with 0.1% (v/v) of TFA. Between each droplet addition, spots were
allowed to dry at rt. The resulting layer-by-layer spots ensured maximal homogeneity and
reproducibility in the MALDI-TOF-MS analyses. Each of the 96 quinoa protein extracts was
spotted and analysed in triplicate.
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2.7. Data Analysis

The MALDI-TOF mass spectra were processed and analysed employing MALDIquant
and multivariate data analysis [31].

2.7.1. MALDIquant Data Processing

The raw mass spectra were initially converted to text format (.txt) using Data Explorer®

software (version 4.5, accessed on 1 December 2023). Afterward, the raw mass spectra were
imported into the R platform (version 4.0.4, http://www.R-project.org/, accessed on 1 Jan-
uary 2024) [33] with the MALDIquantForeign package (version 0.12) [34]. MALDIquant
(version 1.19.3) [35] was then employed to detect protein peaks in the mass spectra based
on their characteristic m/z and intensity values. Imported data from the 96 protein ex-
tracts (3 spots c/u) were first transformed for variance stabilization through a square root
transformation [36]. Smoothing was applied to enhance the signal-to-noise ratio (SNR)
and reduce noise in the mass spectra using the Savitsky–Golay algorithm filter in profile
mode [37]. Subsequently, the baseline was subtracted using the sensitive nonlinear iterative
peak (SNIP) algorithm [38]. The denoised data were then normalized, setting the total
ion current to one [39]. After that, alignment was achieved using the warping algorithm
facilitated by locally weighted scatterplot smoothing (LOWESS) [40]. Following alignment,
the mass spectra from replicates were averaged to derive a mean mass spectrum for each
of the 96 protein extracts. Then, a peak detection algorithm based on the median absolute
deviation (MAD) was applied to detect features of potential proteins [41]. Finally, a peak
binning procedure, using the binpeaks function, was implemented to compensate for small
variations in the m/z values.

2.7.2. Multivariate Data Analysis

Multivariate data analysis was conducted using the PLS Toolbox (Version 9.0, Eigen-
vector Research Incorporated, Wenatchee, WA, USA) in Matlab R2016a (The MathWorks
Incorporated, Natick, MA, USA). Principal component analysis (PCA) and partial least
squares discriminant analysis (PLS-DA) were performed using the scaled intensities of
the proteins detected with MALDIquant. PCA served for the unsupervised assessment of
general clustering trends among different farming and treatment conditions, as well as for
detecting potential outliers. Subsequently, PLS-DA was used to maximize the separation
between observed sample classes, constructing a classification model [42,43]. For model op-
timization, a leave-one-out cross-validation model was performed [44]. Membership within
each class was examined within a 95% confidence ellipse in the PLS-DA score plot [45].
Variable importance in the projection (VIP) scores [44,46] was also calculated to investigate
the degree of influence of each individual protein on discrimination. Finally, the most
relevant proteins for discriminating between the sample classes were tentatively identified
based on their Mr, comparing them with the experimental proteome map of the Salcedo
white quinoa grains obtained in a separate study by LC-MS/MS shotgun proteomics [47].

3. Results and Discussion
3.1. MALDI-TOF-MS Analysis

To obtain characteristic mass spectra profiles of protein extracts from quinoa, we em-
ployed a reliable and reproducible sample preparation method described in our previous
study [31]. This sandwich method, previously used on raw commercial quinoa grains,
was applied to the preparation of sample-MALDI matrix mixtures and spot deposition.
Figures 1 and 2 present representative mass spectra for the protein extracts of seed, grain,
boiled, and extruded V4 quinoa varieties from conventional and organic farming, respectively.

http://www.R-project.org/
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Figure 2. Raw MALDI-TOF mass spectra for the protein extracts of (a) seed, (b) grain, (c) boiled, 
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mass spectra are zoomed in for boiled and extruded quinoa. 

Figure 1. Raw MALDI-TOF mass spectra for the protein extracts of (a) seed, (b) grain, (c) boiled, and
(d) extruded V4 quinoa varieties from conventional farming (V4 = Salcedo). Different regions of the
mass spectra are zoomed in for boiled and extruded quinoa.
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In particular, Figures 1 and 2a,b display the mass spectra of the protein extracts from
seeds and grains under both farming conditions. As can be observed, characteristic mass
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spectra rich in proteins were obtained within the scanned range of 3000 to 25,000 m/z
in all cases. Moreover, the differences in mass spectra were more pronounced when
comparing seeds and grains for a specific farming type. This could be attributed to the
technological treatments applied to quinoa seeds to prepare grains, including scarification
and, particularly, washing and drying, aimed at reducing the high levels of saponins.

On the other hand, Figures 1 and 2c,d illustrate the mass spectra of the protein extracts
from boiled and extruded quinoa under both farming conditions. As can be observed, both
boiling and extrusion treatments led to a reduction in the detected proteins. Indeed, the
total amount of protein in these processed quinoa extracts was lower compared to the raw
quinoa (i.e., seeds and grains), with, for example, 1.1% and 5.5% (m/m) for extruded and
seed V4 quinoa varieties from conventional farming, respectively. Such behaviour can be
attributed to the effect of heat and pressure treatments on the reduction in protein solubility,
resulting in protein denaturation, oxidation, and aggregation [14,48–50].

To generate a reliable large data set for multivariate data analysis, mass spectra
were collected in triplicate (n = 288 spots (96 × 3)) for all the protein extracts of seed,
grain, boiled, and extruded quinoa samples from the four varieties grown under both
conventional and organic farming methods. However, direct peak detection for protein
fingerprinting was challenging due to the complexity of the mass spectra, which exhibited
numerous overlapped protein peaks with varying intensities. Consequently, we employed
MALDIquant software (version 1.19.3) for the efficient quantitative processing of the
mass spectra, as described in our previous work [31]. This approach facilitated improved
peak detection, reliably providing distinctive protein features with characteristic m/z and
intensities. Such accuracy was essential for subsequent multivariate data analysis by PCA
and PLS-DA to discriminate between quinoa samples.

Following this data processing strategy, a total of 49 proteins were detected across the
different quinoa samples, including the four varieties, the two raw materials (seeds and
grains), the two farming conditions (conventional and organic), and the two processing
methods (boiling and extrusion). To tentatively identify these proteins based on their Mr,
we compared them with the experimental proteome map of the Salcedo samples obtained
in a separate study by LC-MS/MS shotgun proteomics [47]. Table 1 lists the experimental
Mr calculated for the detected proteins, their theoretical Mr, the accession number (ID), and
the names of the 31 tentatively identified proteins out of the 49 detected proteins. Note that
in many cases, several possible identifications were provided because the mass accuracy
and resolution of the full-scan MALDI-TOF mass spectrometer was not enough for an
unequivocal identification.

3.2. Multivariate Data Analysis
3.2.1. Discrimination of Conventional and Organic Quinoa

Multivariate data analysis was carried out, considering the intensities of the 49 detected
proteins in the different protein extracts. To simplify data interpretation for differentiating
conventional and organic quinoa samples, only the protein fingerprints from the 48 raw
samples corresponding to seeds and grains grown under both farming conditions were
considered. Initially, unsupervised PCA was employed to visualize trends and identify
outliers from the scores plot (Supplementary Figure S1) [28,31]. Two principal components
(PCs) explained a total variance of 52.9% (Supplementary Figure S1). Given the absence
of distinct trends in the scores plot across samples from the four different white quinoa
varieties, even when increasing the number of components, the representation of the
samples was solely based on farming conditions. As can be observed, PC1 (33.9% of the
explained variance) revealed differential clustering between conventional and organic
quinoa samples, while PC2 (19.0% of the explained variance) separated samples within
these two groups. Additionally, only two samples corresponding to the V2 quinoa variety
from conventional farming appeared outside the 95% confidence ellipse of the scores plot
and were identified as outliers, thus excluding them from the supervised PLS-DA analysis.
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Table 1. List of proteins detected by MALDI-TOF-MS used as variables for multivariate data analysis with their corresponding experimental Mr, PLS-DA VIP score
values for discrimination between farming and processing conditions, and tentative identifications. Theoretical Mr, accession number (ID), and protein name were
based on an experimental proteome map of the Salcedo samples obtained in a separate study by LC-MS/MS shotgun proteomics [47].

Multivariate Data Analysis Protein Variables a Tentative Identifications b

Protein Experimental Mr
c

PLS-DA VIP Scores d

Theoretical Mr Accession Number (ID) e and Protein NameFarming Processing

Craw
f Oraw

f Raw Boiled Extruded

1 4231 0.45 0.45 1.10 0.54 0.74 -

2 4445 0.67 0.67 0.06 0.48 0.41 -

3 4650 0.91 0.91 0.78 0.40 0.53 -

4 4951 1.17 1.17 0.87 0.43 0.59 -

5 5180 1.07 1.07 1.18 0.61 0.81 -

6 5304 0.85 0.85 1.45 * 0.76 1.00 5307 XP_021736943.1 wound-induced basic protein-like

7 5460 0.69 0.69 0.44 0.78 0.70 -

8 5587 1.31 1.31 0.12 0.63 0.54 -

9 5767 0.96 0.96 0.19 1.53 1.30 -

10 5934 0.59 0.59 0.47 1.29 1.13 -

11 6184 1.52 1.52 0.20 1.70 1.45 -

12 6391 0.78 0.78 1.31 * 0.70 0.91 6413 XP_021764391.1 40S ribosomal protein S29

13 6818 1.80 1.80 1.06 0.58 0.75 -

14 7063 1.08 1.08 0.46 1.84 1.58 -

15 7435 0.84 0.84 0.54 1.04 0.93

16 7730 0.73 0.73 0.67 1.32 * 1.17 * 7747 XP_021714409.1 uncharacterized protein LOC110682385

17 7983 1.17 * 1.17 * 1.06 * 1.66 * 1.52 * 7974 XP_021773921.1 metallothionein-like protein 4B

18 8221 0.51 0.51 0.94 1.81 1.62 -

19 8465 0.62 0.62 1.06 1.01 1.02 -
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Table 1. Cont.

Multivariate Data Analysis Protein Variables a Tentative Identifications b

Protein Experimental Mr
c

PLS-DA VIP Scores d

Theoretical Mr Accession Number (ID) e and Protein NameFarming Processing

Craw
f Oraw

f Raw Boiled Extruded

20 8635 0.50 0.50 0.84 0.79 0.81 -

21 8840 1.11 * 1.11 * 1.08 * 0.53 0.73 8806 XP_021718956.1 protein DELETION OF SUV3 SUPPRESSOR 1(I)-like

8814 XP_021729007.1 uncharacterized protein LOC110696048

8823 XP_021762602.1 defensin-like protein

22 9054 0.42 0.42 0.55 0.84 0.77 9076 XP_021768105.1 late seed maturation protein P8B6-like

23 9314 0.57 0.57 0.74 1.39 1.24 -

24 9695 1.26 * 1.26 * 0.95 0.47 0.64 9692 XP_021747091.1 sm-like protein LSM5

25 10,106 0.43 0.43 0.29 0.57 0.51 -

26 10,703 0.75 0.75 0.37 0.37 0.37 10,689 XP_021714810.1 uncharacterized protein LOC110682782

10,724 XP_021756490.1 sm-like protein LSM8

10,736 XP_021756753.1 60S ribosomal protein L37-3

10,750 XP_021768220.1 sm-like protein LSM7

27 10,947 0.99 0.99 1.00 0.69 0.79 10,920 XP_021761138.1 mitochondrial import inner membrane translocase
subunit Tim9

10,928 XP_021746329.1 probable steroid-binding protein 3

10,989 XP_021761862.1 peamaclein-like

28 11,274 1.04 * 1.04 * 0.25 0.86 0.75 11,270 XP_021771595.1 sm-like protein LSM3A

11,308 XP_021716413.1 60S acidic ribosomal protein P2-4-like

29 11,489 0.84 0.84 0.56 1.21 * 1.07 * 11,449 XP_021727941.1 NADH dehydrogenase

11,458 XP_021766637.1 non-specific lipid-transfer protein-like

11,517 XP_021754863.1 thioredoxin M-type, chloroplastic-like isoform X2
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Table 1. Cont.

Multivariate Data Analysis Protein Variables a Tentative Identifications b

Protein Experimental Mr
c

PLS-DA VIP Scores d

Theoretical Mr Accession Number (ID) e and Protein NameFarming Processing

Craw
f Oraw

f Raw Boiled Extruded

30 11,779 0.84 0.84 0.47 0.79 0.72 11,723 XP_021772578.1 RNA polymerase II transcriptional coactivator
KIWI-like isoform X1

11,772 XP_021755694.1 uncharacterized protein LOC110720913

11,797 XP_021763483.1 small ubiquitin-related modifier 1-like

31 12,043 0.84 0.84 0.07 0.41 0.35 11,992 YP_009380236.1 ribosomal protein S18 (chloroplast)

12,050 XP_021776279.1 peptidyl-prolyl cis-trans isomerase FKBP12-like

12,055 XP_021765385.1 NADH dehydrogenase

12,064 XP_021774292.1 huntingtin-interacting protein K-like

32 12,362 0.64 0.64 1.36 * 1.19 * 1.24 * 12,301 XP_021760438.1 gibberellin-regulated protein 9-like

12,315 XP_021716755.1 uncharacterized protein At2g27730,
mitochondrial-like

12,332 XP_021765334.1 V-type proton ATPase subunit G 1-like

12,375 XP_021720641.1 60S ribosomal protein L30

12,407 XP_021761775.1 uncharacterized protein LOC110726608

12,413 XP_021773050.1 60S ribosomal protein L36-2-like

12,420 XP_021738644.1 40S ribosomal protein S25-like

33 12,801 1.01 * 1.01 * 1.58 * 0.78 1.06 * 12,827 XP_021769120.1 60S ribosomal protein L35a-3

12,849 XP_021757241.1 nodulin-related protein 1-like

12,855 XP_021718430.1 nodulin-related protein 1-like

34 13,220 0.43 0.43 1.50 * 1.21 * 1.30 * 13,205 XP_021758336.1 thioredoxin H-type 1-like

13,231 XP_021759897.1 thioredoxin H-type 1-like
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Table 1. Cont.

Multivariate Data Analysis Protein Variables a Tentative Identifications b

Protein Experimental Mr
c

PLS-DA VIP Scores d

Theoretical Mr Accession Number (ID) e and Protein NameFarming Processing

Craw
f Oraw

f Raw Boiled Extruded

35 16,215 0.70 0.70 1.06 * 0.54 0.72 16,134 XP_021716351.1 ferredoxin, root R-B2-like

16,149 XP_021747601.1 uncharacterized protein LOC110713466

16,165 XP_021730244.1 outer envelope pore protein 16-2, chloroplastic-like
isoform X2

16,200 XP_021717733.1 high mobility group B protein 3-like

16,215 XP_021716749.1 ferredoxin, root R-B2-like

16,216 XP_021754488.1 high mobility group B protein 3-like

16,239 XP_021762815.1 uncharacterized protein At5g48480-like

16,250 XP_021766528.1 40S ribosomal protein S14-2

16,289 XP_021721762.1 oleosin 1-like

36 16,514 1.13 * 1.13 * 1.35 * 0.68 0.92 16,458 XP_021733518.1 uncharacterized protein At5g48480-like

16,464 XP_021761922.1 uncharacterized protein LOC110726743

16,469 XP_021746531.1 60S ribosomal protein L27a-3-like

16,474 XP_021769235.1 glycine cleavage system H protein 2,
mitochondrial-like

16,524 XP_021768671.1 60S ribosomal protein L27a-3-like

16,568 XP_021762909.1 uncharacterized protein LOC110727639

16,570 XP_021732568.1 uncharacterized protein LOC110699354

37 16,693 1.34 * 1.34 * 1.41 * 0.75 0.98 16,616 XP_021755504.1 2S albumin-like

16,624 XP_021751394.1 60S ribosomal protein L26-1

16,625 XP_021730224.1 probable calcium-binding protein CML13
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Table 1. Cont.

Multivariate Data Analysis Protein Variables a Tentative Identifications b

Protein Experimental Mr
c

PLS-DA VIP Scores d

Theoretical Mr Accession Number (ID) e and Protein NameFarming Processing

Craw
f Oraw

f Raw Boiled Extruded

16,636 XP_021760375.1 eukaryotic translation initiation factor 1A

16,651 XP_021731588.1 glycine-rich RNA-binding, abscisic acid-inducible
protein-like

16,685 XP_021735190.1 ubiquitin-conjugating enzyme E2 variant 1D-like

16,693 XP_021774210.1 60S ribosomal protein L28-1-like

16,702 XP_021717270.1 blue copper protein-like isoform X2

16,742 XP_021720407.1 17.4 kDa class III heat shock protein-like

16,758 XP_021766054.1 uncharacterized protein LOC110730552

38 16,897 1.56 * 1.56 * 1.20 * 0.86 0.97 16,833 XP_021733717.1 40S ribosomal protein S16-like

16,834 XP_021776507.1 calmodulin-7-like

16,860 XP_021754554.1 calmodulin

16,877 XP_021749775.1 peptidyl-prolyl cis-trans isomerase FKBP15-1-like

16,884 XP_021716580.1 17.4 kDa class III heat shock protein-like

16,933 XP_021735458.1 probable prefoldin subunit 5

16,942 XP_021731073.1 thiosulfate sulfurtransferase 16, chloroplastic-like
isoform X2

16,946 XP_021743153.1 uncharacterized protein LOC110709246

16,962 XP_021758167.1 transcription initiation factor TFIID subunit 15b-like

39 17,101 1.74 * 1.74 * 0.72 1.16 * 1.05 * 17,026 XP_021751891.1 NADH dehydrogenase

17,040 XP_021771944.1 DNA-directed RNA polymerases II, IV and V
subunit 8B-like

17,048 XP_021739940.1 uncharacterized protein LOC110706342
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Table 1. Cont.

Multivariate Data Analysis Protein Variables a Tentative Identifications b

Protein Experimental Mr
c

PLS-DA VIP Scores d

Theoretical Mr Accession Number (ID) e and Protein NameFarming Processing

Craw
f Oraw

f Raw Boiled Extruded

17,111 XP_021765383.1 40S ribosomal protein S13-like

17,129 XP_021766190.1 uncharacterized protein LOC110730679

17,131 XP_021740721.1 MLP-like protein 423

17,143 XP_021769150.1 17.8 kDa class I heat shock protein-like

40 17,326 1.62 * 1.62 * 0.20 1.56 * 1.33 * 17,290 XP_021770408.1 outer envelope pore protein 16-3,
chloroplastic/mitochondrial-like

17,301 XP_021729636.1 NADH dehydrogenase

17,330 XP_021717756.1 uncharacterized protein LOC110685525

17,340 XP_021747441.1 eukaryotic translation initiation factor 5A-4-like

17,350 XP_021764293.1 40S ribosomal protein S15-4-like

17,355 YP_009380273.1 ribosomal protein S7 (chloroplast)

17,366 XP_021747435.1 eukaryotic translation initiation factor 5A-like

17,376 XP_021720177.1 ubiquitin-NEDD8-like protein RUB2

17,385 XP_021748235.1 60S ribosomal protein L23A

41 17,617 1.00* 1.00* 0.32 1.03 * 0.89 17,532 XP_021765685.1 glycine cleavage system H protein, mitochondrial

17,543 XP_021768154.1 glycine cleavage system H protein,
mitochondrial-like

17,560 XP_021731505.1 oleosin 1-like

17,562 XP_021736891.1 peroxiredoxin-2B-like

17,572 XP_021732018.1 peroxiredoxin-2B-like
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Table 1. Cont.

Multivariate Data Analysis Protein Variables a Tentative Identifications b

Protein Experimental Mr
c

PLS-DA VIP Scores d

Theoretical Mr Accession Number (ID) e and Protein NameFarming Processing

Craw
f Oraw

f Raw Boiled Extruded

17,592 XP_021756471.1 putative 4-hydroxy-4-methyl-2-oxoglutarate
aldolase 3

17,604 XP_021735589.1 nascent polypeptide-associated complex subunit
beta-like

17,622 XP_021733122.1 protein mago nashi homolog 2

17,652 XP_021743932.1 histidine-containing phosphotransfer protein 1-like

17,665 XP_021753630.1 uncharacterized protein LOC110719020

17,675 XP_021759953.1 nascent polypeptide-associated complex subunit
beta-like

17,700 XP_021745442.1 40S ribosomal protein S11-3

42 17,879 0.80 0.80 0.26 1.11 * 0.96 17,803 XP_021769395.1 40S ribosomal protein S11-like

17,855 XP_021773311.1 60S ribosomal protein L12-1

17,916 XP_021748317.1 desiccation protectant protein Lea14 homolog

17,939 XP_021749487.1 MLP-like protein 43

17,969 XP_021715429.1 universal stress protein PHOS34-like

43 18,311 0.77 0.77 0.84 0.62 0.69 18,221 XP_021738830.1 oleosin 16 kDa

18,224 XP_021737967.1 MFP1 attachment factor 1-like

18,238 XP_021765145.1 60S ribosomal protein L24-like

18,240 XP_021753128.1 peptidyl-prolyl cis-trans isomerase 1-like

18,252 XP_021763237.1 pathogenesis-related protein STH-21-like

18,254 XP_021775867.1 peptidyl-prolyl cis-trans isomerase 1
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Table 1. Cont.

Multivariate Data Analysis Protein Variables a Tentative Identifications b

Protein Experimental Mr
c

PLS-DA VIP Scores d

Theoretical Mr Accession Number (ID) e and Protein NameFarming Processing

Craw
f Oraw

f Raw Boiled Extruded

18,258 XP_021769094.1 18.3 kDa class I heat shock protein-like

18,271 XP_021730326.1 universal stress protein PHOS32

18,276 XP_021744114.1 17.3 kDa class II heat shock protein-like

18,317 XP_021752091.1 probable NADH dehydrogenase

18,348 XP_021738936.1 17.3 kDa class II heat shock protein-like

18,348 XP_021732306.1 pathogenesis-related protein STH-21-like

18,348 XP_021725562.1 deoxyuridine 5-triphosphate nucleotidohydrolase

18,366 XP_021774711.1 50S ribosomal protein L18, chloroplastic

44 20,349 0.46 0.46 1.72 * 0.85 1.16 * 20,301 XP_021763546.1 30S ribosomal protein 3, chloroplastic

20,406 XP_021734303.1 HMG-Y-related protein A-like

45 20,556 0.81 0.81 2.06 * 1.08 * 1.42 * 20,466 XP_021727144.1 21 kDa seed protein-like

20,499 XP_021763320.1 photosystem II reaction center Psb28 protein-like

20,522 XP_021744010.1 succinate dehydrogenase assembly factor 2,
mitochondrial-like

20,523 XP_021729294.1 uncharacterized protein LOC110696308

20,557 XP_021766022.1 PLAT domain-containing protein 3-like

20,565 XP_021741243.1 putative H/ACA ribonucleoprotein complex
subunit 1-like protein 1

20,592 XP_021769990.1 ADP-ribosylation factor 1-like

20,619 XP_021752903.1 thioredoxin-like protein CITRX, chloroplastic

46 20,780 1.25 * 1.25 * 1.83 * 0.93 1.25 * 20,736 XP_021773813.1 adenylate kinase isoenzyme 6 homolog
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Table 1. Cont.

Multivariate Data Analysis Protein Variables a Tentative Identifications b

Protein Experimental Mr
c

PLS-DA VIP Scores d

Theoretical Mr Accession Number (ID) e and Protein NameFarming Processing

Craw
f Oraw

f Raw Boiled Extruded

20,739 XP_021740322.1 protein CutA, chloroplastic-like

20,778 XP_021761077.1 peroxiredoxin-2F, mitochondrial-like isoform X1

20,799 XP_021753718.1 60S ribosomal protein L11-1

20,801 XP_021772257.1 HMG-Y-related protein A-like

20,844 XP_021763208.1 60S ribosomal protein L18-3-like

20,848 XP_021738998.1 protein OPI10 homolog

20,852 XP_021763370.1 monothiol glutaredoxin-S10-like

47 21,075 1.19 * 1.19 * 1.48 * 0.76 1.01 * 21,027 XP_021750037.1 uncharacterized protein LOC110715738

21,031 XP_021730777.1 thioredoxin O2, mitochondrial-like isoform X2

21,055 XP_021766443.1 lactoylglutathione lyase isoform X2

21,077 XP_021756715.1 uncharacterized protein LOC110721825

21,107 XP_021727997.1 50S ribosomal protein L27, chloroplastic

21,121 XP_021733985.1 glycine-rich RNA-binding protein 3,
mitochondrial-like

21,149 XP_021736893.1 probable inactive nicotinamidase At3g16190

21,170 XP_021763161.1 uncharacterized protein Os08g0359500-like

21,172 XP_021732021.1 probable inactive nicotinamidase At3g16190

48 21,343 1.20 * 1.20 * 1.09 * 0.61 0.78 21,241 XP_021720070.1 ankyrin repeat and SAM domain-containing protein
6-like isoform X2

21,268 XP_021771518.1 uncharacterized protein LOC110735639

21,294 XP_021764214.1 cyclic phosphodiesterase-like
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Table 1. Cont.

Multivariate Data Analysis Protein Variables a Tentative Identifications b
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c
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Theoretical Mr Accession Number (ID) e and Protein NameFarming Processing

Craw
f Oraw

f Raw Boiled Extruded

21,326 XP_021763910.1 60S ribosomal protein L18a-2

21,364 XP_021754795.1 50S ribosomal protein L24, chloroplastic-like

21,376 XP_021718085.1 60S ribosomal protein L18a

21,433 XP_021730369.1 probable prefoldin subunit 3

49 22,079 1.01 * 1.01 * 1.30 * 1.36* 1.34 * 21,984 XP_021772119.1 RNA-binding protein Y14-like

22,018 XP_021763572.1 40S ribosomal protein S7-like

22,034 XP_021761714.1 histone H1-like

22,040 YP_009380239.1 ClpP (chloroplast)

22,088 XP_021766393.1 50S ribosomal protein L9, chloroplastic-like
a PLS−DA variables correspond to the protein peaks detected by MALDIquant. b The experimental proteome map of the same samples obtained in a separate study by LC-MS/MS
shotgun proteomics [47] was used as a reference for the tentative identification. A mass error ±0.5% between the theoretical and experimental Mr was considered acceptable for
proposing an identity. This threshold value was established considering the mass error observed for the analysis of a ribonuclease A standard (from a bovine pancreas) under the same
instrumental conditions, Mr = 13,690). c Experimental Mr were calculated from the m/z values considering the formation of single-charged molecular ions by MALDI-TOF-MS. d VIP
scores > 1 were considered important for discrimination and are marked in bold, and tentatively identified scores were marked with an asterisk (*). e Accession numbers (IDs) of the
identified proteins correspond to the IDs of the indicated LC-MS/MS shotgun proteomics work [47]. The tentatively identified proteins fulfilling the acceptance criterium are ordered by
the Andromeda score values obtained by LC-MS/MS, which are a measure of the reliability of their identification. f Craw and Oraw quinoa correspond to raw (seeds and grains) quinoa
from conventional and organic farming, respectively.



Foods 2024, 13, 1906 18 of 24

A PLS-DA model considering two classes was established to enhance discrimination
and identify the protein variables significantly contributing to the differentiation between
quinoa farming conditions. The scores plot of the PLS-DA model, with two latent variables
(LVs), accounting for 45.5% of the explained variance and illustrated in Figure 3a, effectively
demonstrated discrimination between conventional and organic quinoa samples, suggest-
ing that farming conditions induced differences at the protein level [51]. The loadings
plot depicted the contribution of the different protein variables to the LVs (Figure 3b),
while the VIP scores provided additional information to reveal the relevant contribution of
these variables for discrimination (Figure 4). As shown in Figure 4, 20 of the 49 detected
proteins were found to be the most important for discriminating between conventional and
organic quinoa (VIP > 1) [44]. The Mr values of this subset of 20 proteins ranged between
5000 and 25,000. Additionally, 14 of these relevant proteins were tentatively identified, as
summarized in Table 1. Notably, several of the tentatively identified proteins ranked at
the top of VIP values (VIP > 1.5), including protein 38 (VIP value of 1.56), protein 39 (VIP
value of 1.74), and protein 40 (VIP value of 1.62), which emerged as primary discriminants
between conventional and organic quinoa (see Table 1 for the identities). Overall, these
20 proteins, selected based on their discriminatory potential, could be considered critical
markers for discriminating quinoa grown under varying agroecological conditions.
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3.2.2. Discrimination of Raw and Processed Quinoa

In order to differentiate between raw and processed quinoa, a PCA was conducted
considering the intensities of the 49 detected proteins in the different protein extracts of
seed, grain, boiled, and extruded quinoa samples from conventional and organic farming.
As can be observed in the scores plot of Supplementary Figure S2, two PCs explained a total
variance of 38.3%. To focus on the impact of boiling and extrusion on raw quinoa proteins
and clarify the evaluation of sample trends and clustering, samples were represented in the
score plot without considering the different varieties and farming conditions. PC2 (16.4% of
the explained variance) facilitated the separation of boiled and extruded quinoa from grain
and seed samples, predominantly located along the positive axis of PC2. Furthermore,
PC1 (21.9% of the explained variance) led to a very slight separation between boiled and
extruded quinoa samples, while grain and seed samples were distributed and overlapped
along the axis of this component. Since no clear clustering was observed for seed and
grain samples, we decided to consider raw quinoa samples as a single class for subsequent
PLS-DA analysis (Figure 5).

A PLS-DA model considering three classes (i.e., raw (seed and grain), boiled, and
extruded quinoa samples) was established for improved discrimination between raw
and processed quinoa samples, as well as to identify the most relevant variables for the
discrimination. Figure 5a displays the scores plot of the PLS-DA model with two LVs
(accounting for 30% of the explained variance), revealing a complete separation with a
clear division between boiled, extruded, and raw quinoa samples. This suggested that
quinoa processing affected raw quinoa proteins, as well as demonstrating a differential
effect of boiling and extrusion. VIP values (Figure 6) were calculated to assess the level of
contribution of the different protein variables represented in the loadings plot of Figure 5b
for the discrimination of the three classes of quinoa samples.

Figure 6 shows, in each case, the VIP plots for the discrimination of raw, boiled,
and extruded quinoa samples from the other two sample classes. Analysing Table 1 and
Figure 6, it can be concluded that 38 of the 49 detected proteins were significant for the
discrimination of quinoa sample classes (VIP > 1), constituting critical markers of quinoa
processing. It is important to note that this protein set included the 20 proteins necessary to
distinguish between farming practices. Additionally, 25 of the 38 relevant proteins were
tentatively identified (5000 < Mr < 25,000), as summarized in Table 1 and marked with
an asterisk in Figure 6. Notably, several of the tentatively identified proteins exhibited
high VIP values (VIP > 1.5), underscoring their significance in distinguishing between
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quinoa processing methods. Specifically, proteins 33 (VIP value of 1.58), 44 (VIP value of
1.72), 45 (VIP value of 2.06), and 46 (VIP value of 1.83) emerged as primary discriminants
between raw and boiled/extruded quinoa. Similarly, proteins 17 (VIP value of 1.66) and
40 (VIP value of 1.56) were pivotal in discriminating between boiled and raw/extruded
quinoa, while protein 17 (VIP value of 1.52) also played a crucial role in differentiating
extruded and raw/boiled quinoa.
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4. Conclusions

In this study, we presented a rapid and simple chemometrics-assisted MALDI-TOF-
MS method to assess the influence of conventional and organic farming, boiling, and
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extrusion on protein profiles across various white quinoa grain varieties. Once the raw mass
spectra had been acquired appropriately, we employed MALDIquant for data processing,
enabling the resolution of complexities within the mass spectra and the reliable detection
of proteins. A total of 49 proteins were detected, with 31 tentatively identified. The global
fingerprints, comprising the intensity values of these proteins, were subsequently subjected
to multivariate data analysis. Our results revealed a PLS-DA model for distinguishing
between conventional and organic farming samples, with 20 out of the 49 detected proteins
proving critical for differentiation (14 of which were identified). These 20 proteins were
also relevant for discriminating between raw and processed samples, which required a
total of 38 proteins for an effective differentiation by PLS-DA (25 of which were identified).
This global profiling approach allows protein fingerprinting and chemometrics analysis
to evaluate differences at the protein level in quinoa grains, facilitating the assessment of
farming practices and quality changes during food processing. Further research will be
needed to assess the impact of these differences at the nutritional and immunonutritional
levels. Additionally, the potential application of the presented approach extends to other
areas of food analysis, especially when dealing with complex mass spectra with highly
overlapped peaks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13121906/s1, Supplementary Figure S1. PCA scores plot
derived from the analysis of 48 protein extracts from conventional and organic raw quinoa varieties
(seed and grain) using the intensities of the 49 protein peaks detected by MALDIquant.; Supplemen-
tary Figure S2. PCA scores plot derived from the analysis of 96 protein extracts from seed, grain,
boiled, and extruded quinoa varieties from conventional and organic farming using the intensities of
the 49 protein peaks detected by MALDIquant.

Author Contributions: R.G.-L.: Methodology, Investigation, Writing original draft. L.P.: Con-
ceptualization, Supervision, Investigation, Writing—review and editing, F.Q.: Conceptualization,
Writing—review and editing. V.S.-N.: Conceptualization, Supervision, Writing—review and editing.
F.B.: Conceptualization, Supervision, Writing—review and editing, Funding acquisition. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was supported by grant PID2021-127137OB-I00, funded by MCIN/AEI/10.13039/
501100011033, and by “ERDF A way of making Europe”. The Bioanalysis group of the University of
Barcelona is part of the INSA-UB Maria de Maeztu Unit of Excellence (Grant CEX2021-001234-M)
funded by MCIN/AEI/FEDER, UE.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article/Supplementary Materials, further inquiries can be directed to the corresponding author.

Acknowledgments: R.G. thanks the Ministry of Education of Peru for a PhD fellowship.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Aloisi, I.; Parrotta, L.; Ruiz, K.B.; Landi, C.; Bini, L.; Cai, G.; Biondi, S.; Del Duca, S. New Insight into Quinoa Seed Quality under

Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts. Front.
Plant Sci. 2016, 7, 183977. [CrossRef] [PubMed]

2. Mu, H.; Xue, S.; Sun, Q.; Shi, J.; Zhang, D.; Wang, D.; Wei, J. Research Progress of Quinoa Seeds (Chenopodium quinoa Wild.):
Nutritional Components, Technological Treatment, and Application. Foods 2023, 12, 2087. [CrossRef] [PubMed]

3. Chaudhary, N.; Walia, S.; Kumar, R. Functional Composition, Physiological Effect and Agronomy of Future Food Quinoa
(Chenopodium Quinoa Willd.): A Review. J. Food Compos. Anal. 2023, 118, 105192. [CrossRef]

4. Angeli, V.; Silva, P.M.; Massuela, D.C.; Khan, M.W.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium
quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its
Cultivation and Marketization. Foods 2020, 9, 216. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/foods13121906/s1
https://www.mdpi.com/article/10.3390/foods13121906/s1
https://doi.org/10.3389/fpls.2016.00656
https://www.ncbi.nlm.nih.gov/pubmed/27242857
https://doi.org/10.3390/foods12102087
https://www.ncbi.nlm.nih.gov/pubmed/37238905
https://doi.org/10.1016/j.jfca.2023.105192
https://doi.org/10.3390/foods9020216
https://www.ncbi.nlm.nih.gov/pubmed/32092899


Foods 2024, 13, 1906 23 of 24

5. Niro, S.; D’Agostino, A.; Fratianni, A.; Cinquanta, L.; Panfili, G. Gluten-Free Alternative Grains: Nutritional Evaluation and
Bioactive Compounds. Foods 2019, 8, 208. [CrossRef] [PubMed]

6. Mhada, M.; Metougui, M.L.; El Hazzam, K.; El Kacimi, K.; Yasri, A. Variations of Saponins, Minerals and Total Phenolic
Compounds Due to Processing and Cooking of Quinoa (Chenopodium quinoa Willd.) Seeds. Foods 2020, 9, 660. [CrossRef]
[PubMed]

7. Hussain, M.I.; Farooq, M.; Syed, Q.A.; Ishaq, A.; Al-Ghamdi, A.A.; Hatamleh, A.A. Botany, Nutritional Value, Phytochemical
Composition and Biological Activities of Quinoa. Plants 2021, 10, 2258. [CrossRef] [PubMed]

8. Ceyhun Sezgin, A.; Sanlier, N. A New Generation Plant for the Conventional Cuisine: Quinoa (Chenopodium quinoa Willd.). Trends
Food Sci. Technol. 2019, 86, 51–58. [CrossRef]

9. El-Serafy, R.S.; El-Sheshtawy, A.-N.A.; Abd El-Razek, U.A.; Abd El-Hakim, A.F.; Hasham, M.M.A.; Sami, R.; Khojah, E.; Al-
Mushhin, A.A.M. Growth, Yield, Quality, and Phytochemical Behavior of Three Cultivars of Quinoa in Response to Moringa and
Azolla Extracts under Organic Farming Conditions. Agronomy 2021, 11, 2186. [CrossRef]

10. Gomiero, T. Food Quality Assessment in Organic vs. Conventional Agricultural Produce: Findings and Issues. Appl. Soil Ecol.
2018, 123, 714–728. [CrossRef]

11. Cancino-Espinoza, E.; Vázquez-Rowe, I.; Quispe, I. Organic Quinoa (Chenopodium quinoa L.) Production in Peru: Environmental
Hotspots and Food Security Considerations Using Life Cycle Assessment. Sci. Total Environ. 2018, 637–638, 221–232. [CrossRef]
[PubMed]

12. FAO; CIRAD. State of the Art Report on Quinoa around the World in 2013; Bazile, D., Bertero, D., Nieto, C., Eds.; FAO: Rome, Italy,
2015; ISBN 978-92-5-108558-5.

13. Huang, R.; Huang, K.; Guan, X.; Li, S.; Cao, H.; Zhang, Y.; Lao, X.; Bao, Y.; Wang, J. Effect of Defatting and Extruding Treatment
on the Physicochemical and Storage Properties of Quinoa (Chenopodium quinoa Wild) Flour. LWT 2021, 147, 111612. [CrossRef]

14. Naozuka, J.; Oliveira, P.V. Cooking Effects on Iron and Proteins Content of Beans (Phaseolus vulgaris L.) by GF AAS and
MALDI-TOF MS. J. Braz. Chem. Soc. 2012, 23, 156–162.

15. Scanlin, L.; Lewis, K.A. Quinoa as a Sustainable Protein Source: Production, Nutrition, and Processing. In Sustainable Protein
Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 223–238.
ISBN 9780128027769.

16. Poza-Viejo, L.; Redondo-Nieto, M.; Matías, J.; Granado-Rodríguez, S.; Maestro-Gaitán, I.; Cruz, V.; Olmos, E.; Bolaños, L.; Reguera,
M. Shotgun Proteomics of Quinoa Seeds Reveals Chitinases Enrichment under Rainfed Conditions. Sci. Rep. 2023, 13, 4951.
[CrossRef] [PubMed]

17. Di Silvestre, D.; Passignani, G.; Rossi, R.; Ciuffo, M.; Turina, M.; Vigani, G.; Mauri, P.L. Presence of a Mitovirus Is Associated with
Alteration of the Mitochondrial Proteome, as Revealed by Protein–Protein Interaction (PPI) and Co-Expression Network Models
in Chenopodium Quinoa Plants. Biology 2022, 11, 95. [CrossRef] [PubMed]

18. Derbali, W.; Manaa, A.; Spengler, B.; Goussi, R.; Abideen, Z.; Ghezellou, P.; Abdelly, C.; Forreiter, C.; Koyro, H.W. Comparative
Proteomic Approach to Study the Salinity Effect on the Growth of Two Contrasting Quinoa Genotypes. Plant Physiol. Biochem.
2021, 163, 215–229. [CrossRef] [PubMed]

19. Rasouli, F.; Kiani-Pouya, A.; Shabala, L.; Li, L.; Tahir, A.; Yu, M.; Hedrich, R.; Chen, Z.; Wilson, R.; Zhang, H.; et al. Salinity Effects
on Guard Cell Proteome in Chenopodium Quinoa. Int. J. Mol. Sci. 2021, 22, 428. [CrossRef] [PubMed]

20. Wang, Z.; Wu, Q.; Kamruzzaman, M. Portable NIR Spectroscopy and PLS Based Variable Selection for Adulteration Detection in
Quinoa Flour. Food Control 2022, 138, 108970. [CrossRef]

21. Shotts, M.L.; Plans Pujolras, M.; Rossell, C.; Rodriguez-Saona, L. Authentication of Indigenous Flours (Quinoa, Amaranth and
Kañiwa) from the Andean Region Using a Portable ATR-Infrared Device in Combination with Pattern Recognition Analysis. J.
Cereal Sci. 2018, 82, 65–72. [CrossRef]

22. Rodríguez, S.D.; Rolandelli, G.; Buera, M.P. Detection of Quinoa Flour Adulteration by Means of FT-MIR Spectroscopy Combined
with Chemometric Methods. Food Chem. 2019, 274, 392–401. [CrossRef]

23. Xue, S.S.; Tan, J.; Xie, J.Y.; Li, M.F. Rapid, Simultaneous and Non-Destructive Determination of Maize Flour and Soybean Flour
Adulterated in Quinoa Flour by Front-Face Synchronous Fluorescence Spectroscopy. Food Control 2021, 130, 108329. [CrossRef]

24. Kelis Cardoso, V.G.; Poppi, R.J. Cleaner and Faster Method to Detect Adulteration in Cassava Starch Using Raman Spectroscopy
and One-Class Support Vector Machine. Food Control 2021, 125, 107917. [CrossRef]

25. Ellis, D.I.; Brewster, V.L.; Dunn, W.B.; Allwood, J.W.; Golovanov, A.P.; Goodacre, R. Fingerprinting Food: Current Technologies
for the Detection of Food Adulteration and Contamination. Chem. Soc. Rev. 2012, 41, 5706–5727. [CrossRef] [PubMed]

26. Bansal, S.; Singh, A.; Mangal, M.; Mangal, A.K.; Kumar, S. Food Adulteration: Sources, Health Risks, and Detection Methods.
Crit. Rev. Food Sci. Nutr. 2017, 57, 1174–1189. [CrossRef] [PubMed]

27. Yang, X.; Xing, B.; Guo, Y.; Wang, S.; Guo, H.; Qin, P.; Hou, C.; Ren, G. Rapid, Accurate and Simply-Operated Determination
of Laboratory-Made Adulteration of Quinoa Flour with Rice Flour and Wheat Flour by Headspace Gas Chromatography-Ion
Mobility Spectrometry. LWT 2022, 167, 113814. [CrossRef]

28. Galindo-Luján, R.; Pont, L.; Sanz-Nebot, V.; Benavente, F. Classification of Quinoa Varieties Based on Protein Fingerprinting by
Capillary Electrophoresis with Ultraviolet Absorption Diode Array Detection and Advanced Chemometrics. Food Chem. 2021,
341, 128207. [CrossRef] [PubMed]

https://doi.org/10.3390/foods8060208
https://www.ncbi.nlm.nih.gov/pubmed/31212866
https://doi.org/10.3390/foods9050660
https://www.ncbi.nlm.nih.gov/pubmed/32443894
https://doi.org/10.3390/plants10112258
https://www.ncbi.nlm.nih.gov/pubmed/34834624
https://doi.org/10.1016/j.tifs.2019.02.039
https://doi.org/10.3390/agronomy11112186
https://doi.org/10.1016/j.apsoil.2017.10.014
https://doi.org/10.1016/j.scitotenv.2018.05.029
https://www.ncbi.nlm.nih.gov/pubmed/29751305
https://doi.org/10.1016/j.lwt.2021.111612
https://doi.org/10.1038/s41598-023-32114-5
https://www.ncbi.nlm.nih.gov/pubmed/36973333
https://doi.org/10.3390/biology11010095
https://www.ncbi.nlm.nih.gov/pubmed/35053093
https://doi.org/10.1016/j.plaphy.2021.03.055
https://www.ncbi.nlm.nih.gov/pubmed/33862501
https://doi.org/10.3390/ijms22010428
https://www.ncbi.nlm.nih.gov/pubmed/33406687
https://doi.org/10.1016/j.foodcont.2022.108970
https://doi.org/10.1016/j.jcs.2018.04.005
https://doi.org/10.1016/j.foodchem.2018.08.140
https://doi.org/10.1016/j.foodcont.2021.108329
https://doi.org/10.1016/j.foodcont.2021.107917
https://doi.org/10.1039/c2cs35138b
https://www.ncbi.nlm.nih.gov/pubmed/22729179
https://doi.org/10.1080/10408398.2014.967834
https://www.ncbi.nlm.nih.gov/pubmed/26054861
https://doi.org/10.1016/j.lwt.2022.113814
https://doi.org/10.1016/j.foodchem.2020.128207
https://www.ncbi.nlm.nih.gov/pubmed/33035861


Foods 2024, 13, 1906 24 of 24

29. Galindo-Luján, R.; Caballero-Alcazar, N.; Pont, L.; Sanz-Nebot, V.; Benavente, F. Fingerprinting of Quinoa Grain Protein Extracts
by Liquid Chromatography with Spectrophotometric Detection for Chemometrics Discrimination. LWT 2023, 187, 115289.
[CrossRef]

30. Galindo-Luján, R.; Pont, L.; Minic, Z.; Berezovski, M.V.; Sanz-Nebot, V.; Benavente, F. Characterization and Differentiation of
Quinoa Seed Proteomes by Label-Free Mass Spectrometry-Based Shotgun Proteomics. Food Chem. 2021, 363, 130250. [CrossRef]
[PubMed]

31. Galindo-Luján, R.; Pont, L.; Sanz-Nebot, V.; Benavente, F. Protein Profiling and Classification of Commercial Quinoa Grains by
MALDI-TOF-MS and Chemometrics. Food Chem. 2023, 398, 133895. [CrossRef] [PubMed]

32. Galindo-Luján, R.; Pont, L.; Sanz-Nebot, V.; Benavente, F. A Proteomics Data Mining Strategy for the Identification of Quinoa
Grain Proteins with Potential Immunonutritional Bioactivities. Foods 2023, 12, 390. [CrossRef]

33. R Development Core Team: R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing.
Available online: http://www.r-project.org/ (accessed on 1 January 2024).

34. Gibb, S. MALDIquantForeign: Import/Export Routines for MALDIquant. 2014; pp. 1–7. Available online: https://cran.r-project.
org/package=MALDIquantForeign (accessed on 1 January 2024).

35. Gibb, S.; Strimmer, K. Mass Spectrometry Analysis Using MALDIquant. In Statistical Analysis of Proteomics, Metabolomics, and
Lipidomics Data Using Mass Spectrometry; Springer: Cham, Switzerland, 2017; pp. 101–124.

36. Purohit, P.V.; Rocke, D.M. Discriminant Models for High-Throughput Proteomics Mass Spectrometer Data. Proteomics 2003, 3,
1699–1703. [CrossRef]

37. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36,
1639–1643. [CrossRef]

38. Ryan, C.G.; Clayton, E.; Griffin, W.L.; Sie, S.H.; Cousens, D.R. SNIP, a Statistics-Sensitive Background Treatment for the
Quantitative Analysis of PIXE Spectra in Geoscience Applications. Nucl. Instrum. Methods Phys. Res. B 1988, 34, 396–402.
[CrossRef]

39. Borgaonkar, S.P.; Hocker, H.; Shin, H.; Markey, M.K. Comparison of Normalization Methods for the Identification of Biomarkers
Using MALDI-TOF and SELDI-TOF Mass Spectra. OMICS 2010, 14, 115–126. [CrossRef]

40. Cleveland, W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [CrossRef]
41. Friedman, J.H. A Variable Span Smoother. Laboratory for Computational Statistics, Stanford University Technical Report No. 5. J.

Am. Stat. Assoc. 1984, 5, 1–32. [CrossRef]
42. Barker, M.; Rayens, W. Partial Least Squares for Discrimination. J. Chemom. 2003, 17, 166–173. [CrossRef]
43. Ballabio, D.; Consonni, V. Classification Tools in Chemistry. Part 1: Linear Models. PLS-DA. Anal. Methods 2013, 5, 3790–3798.

[CrossRef]
44. Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130.

[CrossRef]
45. Worley, B.; Halouska, S.; Powers, R. Utilities for Quantifying Separation in PCA/PLS-DA Scores Plots. Anal. Biochem. 2013, 433,

102–104. [CrossRef]
46. Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A Review of Variable Selection Methods in Partial Least Squares Regression.

Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [CrossRef]
47. Galindo-Luján, R.; Pont, L.; Minic, Z.; Berezovski, M.V.; Quispe, F.; Sanz-Nebot, V.; Benavente, F. Comprehensive Characterization

of Raw and Processed Quinoa from Conventional and Organic Farming by Label-Free Shotgun Proteomics. 2024. Manuscript
submitted for publication. Available online: https://ssrn.com/abstract=4774018 (accessed on 27 March 2024).

48. Soladoye, O.P.; Juárez, M.L.; Aalhus, J.L.; Shand, P.; Estévez, M. Protein Oxidation in Processed Meat: Mechanisms and Potential
Implications on Human Health. Compr. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [CrossRef] [PubMed]

49. Santé-Lhoutellier, V.; Astruc, T.; Marinova, P.; Greve, E.; Gatellier, P. Effect of Meat Cooking on Physicochemical State and in Vitro
Digestibility of Myofibrillar Proteins. J. Agric. Food Chem. 2008, 56, 1488–1494. [CrossRef] [PubMed]

50. Tang, H.; Fu, T.; Feng, Y.; Zhang, S.; Wang, C.; Zhang, D. Effect of Heat Treatment on Solubility, Surface Hydrophobicity and
Structure of Rice Bran Albumin and Globulin. Qual. Assur. Saf. Crops Foods 2019, 11, 499–509. [CrossRef]

51. Xiao, R.; Li, L.; Ma, Y. A Label-Free Proteomic Approach Differentiates between Conventional and Organic Rice. J. Food Compos.
Anal. 2019, 80, 51–61. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.lwt.2023.115289
https://doi.org/10.1016/j.foodchem.2021.130250
https://www.ncbi.nlm.nih.gov/pubmed/34120052
https://doi.org/10.1016/j.foodchem.2022.133895
https://www.ncbi.nlm.nih.gov/pubmed/35986991
https://doi.org/10.3390/foods12020390
http://www.r-project.org/
https://cran.r-project.org/package=MALDIquantForeign
https://cran.r-project.org/package=MALDIquantForeign
https://doi.org/10.1002/pmic.200300518
https://doi.org/10.1021/ac60214a048
https://doi.org/10.1016/0168-583X(88)90063-8
https://doi.org/10.1089/omi.2009.0082
https://doi.org/10.1080/01621459.1979.10481038
https://doi.org/10.2172/1447470
https://doi.org/10.1002/cem.785
https://doi.org/10.1039/c3ay40582f
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/j.ab.2012.10.011
https://doi.org/10.1016/j.chemolab.2012.07.010
https://ssrn.com/abstract=4774018
https://doi.org/10.1111/1541-4337.12127
https://www.ncbi.nlm.nih.gov/pubmed/33401805
https://doi.org/10.1021/jf072999g
https://www.ncbi.nlm.nih.gov/pubmed/18237130
https://doi.org/10.3920/QAS2018.1402
https://doi.org/10.1016/j.jfca.2019.04.004

	Introduction 
	Materials and Methods 
	Chemicals 
	Samples 
	Extrusion Process 
	Boiling Process 
	Sample Preparation 
	MALDI-TOF-MS 
	Data Analysis 
	MALDIquant Data Processing 
	Multivariate Data Analysis 


	Results and Discussion 
	MALDI-TOF-MS Analysis 
	Multivariate Data Analysis 
	Discrimination of Conventional and Organic Quinoa 
	Discrimination of Raw and Processed Quinoa 


	Conclusions 
	References

