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Abstract: Forest plantations can be established in order to restore degraded areas. Acoustic tomog-
raphy, which is of increasing importance in forest management, was used in the present study to
obtain information for managing plantations of Cedrelinga cateniformis Ducke in the Peruvian Amazon.
The species is valuable in the timber sector of Peru, but the core wood tends to deteriorate and
develop cavities. The main objective of the study was to model wood deterioration in Cedrelinga
cateniformis Ducke using the data obtained through acoustic tomography. Eight plantations of varying
ages were analyzed using acoustic tomography in order to obtain indicators of wood deterioration.
Biometric, climatic, and edaphic data (explanatory variables) were also measured in each plantation.
The indicator variables and explanatory variables were compared and evaluated using correlation
and principal component analysis. Wood deterioration was modelled using stepwise regression. The
indicator variables differed significantly between plantations and were mainly correlated with the
biometric variables (age and diameter at breast height). The models explained 81% of the variability
of pith rot. The percentage rotten area was minimal in young plantations (1%), and the opposite was
observed in mature trees (21.5 to 25.6%). The study findings provide valuable information, enabling
foresters to determine the optimal age and diameter for felling Cedrelinga cateniformis in plantations
in the Peruvian Amazon.

Keywords: non-destructive evaluation; acoustic waves; wood quality; internal defects; regression

1. Introduction

Forests and forest plantations are invaluable natural resources for humans [1]. How-
ever, in the forestry industry in Peru, wood is selected and extracted from natural forests
without considering the need to restore these plant formations or to maintain a permanent
balance between growth and productivity [2]. Wood is a valuable material with a vital role,
and its properties determine the applications and economic value of the final products [3].
Likewise, the loss of the structural functionality of trees due to the deterioration of core
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wood can negatively impact the value [4]. In the context of the high demand and restricted
availability of resources from natural forests [5], wood extraction from forest plantations
must be regulated in order to ensure that high-quality products are obtained [6]. Addition-
ally, the use of innovative technologies is essential to optimize the use of forest resources,
ensuring sustainability and the supply of good quality raw material [7].

Wood evaluation methods can be categorized according to the level of destruction
of the material being evaluated; they are classified as destructive, semi-destructive, and
non-destructive [8], the latter of which is the most commonly used [9]. Non-destructive
evaluation (NDE) methods that do not alter the structure of the wood can be used to deter-
mine the physical and mechanical properties, thus enabling the use of the tested wood [10].
Different tests with different principles are used in this method of evaluating wood quality,
including mechanical tests, ultrasound, resonance, and acoustic tomography [11]. NDE
methods provide valuable information for different applications, such as performing clonal
selection, tree classification, and tree risk management in urban areas [12].

For decades, researchers have used invasive (destructive) methods to detect internal
defects in wood [13]. However, since the 1960s, NDE methods have been used to determine
the growth characteristics and physical–mechanical properties of standing wood and to
detect internal defects in the stem [14]. At present, forest managers and arborists use non-
destructive techniques to locate and quantify defects and deterioration in wood at different
stands and forest scales [5,15,16]. Maximizing the use of forest resources by considering
variations in wood properties at multiple scales can increase the final yields [17]. Acoustic
technology has become an essential tool for evaluating material via the use of NDE methods.
The technology is also used for other applications in the forestry industry, including quality
control and product classification [18].

Sound is produced by wave motion in an elastic medium (solid, liquid, or gas) and
requires a source of mechanical vibration [19]. In wood, wave propagation is a dynamic
process that is internally related to physical and mechanical properties, particularly the
moduli of elasticity, density, and humidity [20,21]. Acoustic tomography relies on measur-
ing sound waves that travel through a material (in this case, tree stems) from one sensor to
another [16]. This method can detect the presence of anomalies or deterioration in trees
via analyzing the propagation of sound waves generated when sensors are tapped with an
electronic impact hammer. The result of this measurement process is a tomogram, which
represents the speed of the sound waves in the cross-section [22]. Tomographic images are
essential in internal tree inspection [23]. The velocity of sound propagation is generally
faster in healthy (more solid) wood than it is in degraded wood [24], although the acoustic
properties of wood can also be affected by various factors such as age and phytosanitary
status, as well as natural defects such as grain deviation, knots, and resin pockets.

Acoustic tomography is used by professionals in the forestry sector and by arborists [25].
In a study conducted in 2005, researchers concluded that the resolution of the images
obtained through stress waves can be improved via increasing the frequency applied
and the number of sensors used [26]. In 2014, a demonstration in the Czech Republic
showed non-invasive methods to be a promising tool for managing and protecting forest
ecosystems [27]. In 2022, the use of the dynamic modulus of elasticity was found to improve
the acoustic tomographic evaluation of standing trees, demonstrating that sound velocity
is related to the mechanical parameters of wood [24]. The inspection of standing trees in
China and Panama showed that acoustic tomography is an effective, non-invasive method
for assessing internal decay, cavities, and structural integrity, even in irregularly shaped
trees [4,28,29]. Other studies have used tomography for the numerical simulation of wave
propagation to determine the size of the cavity and for developing a new approach to the
quantitative analysis of acoustic tomography images, demonstrating the effectiveness of
the method relative to others [30]. Acoustic tomography studies generally involve the use
of the technique in urban trees or the development of new methodologies [15,23]; however,
modelling studies of internal tree health are scarce [16]. At present, acoustic tomography is
not widely used in Peru. The techniques have been used to evaluate the health of forest
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plantations in the Amazon [5,31,32] and to determine the risk of falling urban trees in
Lima [33]. The number of trunks affected was determined in all of these studies.

Cedrelinga cateniformis Ducke is a monotypic species, with a restricted distribution in
the Neotropical region, with the Amazon as the natural center of distribution [34]. It is a
low-demanding species, which leads to the rapid early growth of the trees. Annual growth
can reach up to 2.56 m in the first 6 years, and tends to continue increasing [35]. In Peru,
the species is distributed in the Amazonas, Madre de Dios, Huánuco, Junín, Loreto, Pasco,
San Martín, Ucayali, and Cuzco territories [36]. The wood is classified as being of medium
density, easy to work with, and with a good surface finish [37]. It is used to produce wood
panels, cellulose, and paper, and in civil and marine construction [38]. C. cateniformis is
important in the Peruvian timber market [39], representing 9.2% of the national market,
90% of which is obtained from tropical forests, mainly in areas such as Loreto, Madre de
Dios, and Ucayali [37]. The demand for the wood has increased constantly due to its good
physical and mechanical properties [2]. However, the presence of medullary rotting in the
stem [39] discourages producers in plantations using it [40].

The primary aim of this research was to model wood deterioration in Cedrelinga
cateniformis Ducke with data acquired from acoustic tomography. We hypothesized that
wood decay in this species is influenced by biometric, climatic, and/or edaphic factors. The
research findings will help to establish a more efficient forest management system for the
species and generate more income for forest producers [41].

2. Materials and Methods
2.1. Study Area

For the study, a total of eight C. cateniformis plantations, distributed in two properties,
located in Loreto Department, Maynas province, San Juan Bautista district (Peru), were
evaluated. The “Puerto Almendra” property (geographical coordinates 3◦50.046′ S and
73◦22.670′ W), which belongs to the State University of the Peruvian Amazon (UNAP),
is located at an elevation of 95 m.a.s.l. The second property, the “El Dorado” Experimen-
tal Annex (geographical coordinates 3◦56.279′ S and 73◦25.342′ W), belongs to the San
Roque Agricultural Experimental Station (INIA), and is located at an elevation of 120 m
m.a.s.l. (Figure 1).

Forests 2024, 15, x FOR PEER REVIEW 4 of 18 
 

 

 

Figure 1. Location of Cedrelinga cateniformis plantations, Peru. (a) study area, (b) distribution of 

plots. 

2.2. Methodology 

In October 2022, all plantations were inventoried using the Field-Map (FM) software 

and hardware (version X16). The trees were georeferenced at a precision of 0.03 m. The 

diameter at breast height (DBH) (1.3 m) was subsequently measured with a diametric 

tape, and the commercial height (CH) and total height (TH) were determined with a hyp-

someter. In total, 8 plantations of ages ranging from 15 to 53 years were evaluated as fol-

lows: 4 belonging to the UNAP (P1, P2, P3, and P4), and the other 4 to the “El Dorado” 

site (P5, P6, P7, and P8). The seeds used to establish the plantations were obtained from 

seed trees of the same population located in the surrounding natural forests [37]. Enrich-

ment planting (EP), forest massifs (FMs), and agroforestry systems (AFSs) were estab-

lished at different spacings (Table 1). EP aims to add valuable forest species to degraded 

forest; FMs correspond to plantations in open areas where the plants are uniformly dis-

tributed; and AFSs are production systems where crops and trees are planted sequentially. 

The DBH of the trees evaluated ranged from 11.4 to 152.6 cm, the CH ranged from 1.8 to 

19.7 m, and the TH ranged from 9.7 to 45.7 m (Table 1). 

Table 1. Structural characteristics of Cedrelinga cateniformis plantations, Peru. 

Property UNAP A.E. El Dorado 

Plot P1 P2 P3 P4 P5 P6 P7 P8 

Age (years) 15 43 53 24 24 18 33 26 

System of plantation  EP EP FM AFS AFS AFS FM AFS 

Area (ha) 4.46 0.60 0.41 0.98 0.54 1.30 0.27 0.40 

Spacing (m) 7 × 7 5 × 5 10 × 10 7 × 7 8 × 6 35 × 5 2.7 × 2.7 5 × 5 

N 43 72 17 28 40 51 91 66 

DBH 

(cm) 

Minimum 13.3 22.9 57.0 24.2 21.9 16.2 11.4 7.3 

Mean 34.6 46.5 73.3 54.9 49.6 43.5 40.3 31.0 

Maximum 56.5 84.9 120.1 152.6 85.6 70.0 96.0 62.0 

Figure 1. Location of Cedrelinga cateniformis plantations, Peru. (a) study area, (b) distribution of plots.



Forests 2024, 15, 778 4 of 16

The Department of Loreto occupies an area of 369,852 km2, representing 28.7% of the
surface area of Peru. It is located in the extreme northeast of Peru, and is divided into
7 provinces and 51 districts. The Department borders with Ecuador, Colombia, and Brazil,
and it belongs to the so-called “Amazonian Plain”, whose elevational gradient ranges from
61 to 220 m.a.s.l. [42].

San Juan Bautista has a typical jungle environment below 350 m.a.s.l., with mean and
minimum temperatures of, respectively, 25.0 and 23.0 ◦C; the precipitation ranges from
2000 to 3000 mm annually [43]. The minimum, mean, and maximum temperatures in
the study area are 21.17, 26.18, and 31.25 ◦C, respectively; and the mean precipitation is
2680.88 mm year−1. The soils are mainly clay loam and loamy sand, which are strongly
acidic, with low to medium levels of organic matter.

2.2. Methodology

In October 2022, all plantations were inventoried using the Field-Map (FM) software
and hardware (version X16). The trees were georeferenced at a precision of 0.03 m. The
diameter at breast height (DBH) (1.3 m) was subsequently measured with a diametric tape,
and the commercial height (CH) and total height (TH) were determined with a hypsometer.
In total, 8 plantations of ages ranging from 15 to 53 years were evaluated as follows:
4 belonging to the UNAP (P1, P2, P3, and P4), and the other 4 to the “El Dorado” site
(P5, P6, P7, and P8). The seeds used to establish the plantations were obtained from seed
trees of the same population located in the surrounding natural forests [37]. Enrichment
planting (EP), forest massifs (FMs), and agroforestry systems (AFSs) were established at
different spacings (Table 1). EP aims to add valuable forest species to degraded forest; FMs
correspond to plantations in open areas where the plants are uniformly distributed; and
AFSs are production systems where crops and trees are planted sequentially. The DBH of
the trees evaluated ranged from 11.4 to 152.6 cm, the CH ranged from 1.8 to 19.7 m, and the
TH ranged from 9.7 to 45.7 m (Table 1).

Table 1. Structural characteristics of Cedrelinga cateniformis plantations, Peru.

Property UNAP A.E. El Dorado
Plot P1 P2 P3 P4 P5 P6 P7 P8

Age (years) 15 43 53 24 24 18 33 26
System of plantation EP EP FM AFS AFS AFS FM AFS

Area (ha) 4.46 0.60 0.41 0.98 0.54 1.30 0.27 0.40
Spacing (m) 7 × 7 5 × 5 10 × 10 7 × 7 8 × 6 35 × 5 2.7 × 2.7 5 × 5

N 43 72 17 28 40 51 91 66

DBH
(cm)

Minimum 13.3 22.9 57.0 24.2 21.9 16.2 11.4 7.3
Mean 34.6 46.5 73.3 54.9 49.6 43.5 40.3 31.0

Maximum 56.5 84.9 120.1 152.6 85.6 70.0 96.0 62.0
Deviation 10.6 16.5 17.0 24.1 12.8 11.8 16.4 10.2

CH
(m)

Minimum 1.8 3.4 2.3 3.1 8.0 4.2 4.3 3.5
Mean 5.1 8.6 8.1 9.2 13.9 9.0 12.7 8.4

Maximum 11.3 15.8 14.1 17.4 19.7 17.5 19.7 16.2
Deviation 2.0 3.2 3.2 3.3 2.8 3.0 4.0 3.1

TH
(m)

Minimum 12.2 16.4 23.4 17.2 19.2 12.5 11.7 9.7
Mean 18.3 26.6 31.0 25.7 28.3 22.4 33.2 21.5

Maximum 24.7 38.8 45.7 35.2 37.0 28.2 48.3 31.3
Deviation 3.3 5.2 6.1 4.8 3.7 4.0 7.7 4.8

CV
(m3)

Minimum 0.0272 0.0822 0.5665 0.1076 0.3046 0.0852 0.0216 0.0087
Mean 0.2722 0.8822 1.6308 1.3234 1.4798 0.7616 1.0016 0.3607

Maximum 1.0820 3.0943 3.4895 8.6903 5.5719 2.6911 5.9236 1.0969
Deviation 0.2147 0.7241 0.7725 1.5871 0.9721 0.5736 0.9376 0.2672

N: Number of individuals, DBH: diameter at breast height (1.3 m), CH: commercial height, TH: total height,
CV: commercial volume, EP: enrichment planting, FM: forest massif, AFS: agroforestry system.
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The wood deterioration was evaluated using acoustic tomography (ArborSonic 3D,
Fakopp Enterprise Ltd., Sopron, Hungary). Trees were classified into 10 cm diameter classes
in all plantations. Between 3 and 13 individuals were evaluated, depending on the total
number of trees included in each class [44]; 30, 40, 17, 24, 40, 40, 51, 40, and 42 individuals
were evaluated in plots P1, P2, P3, P4, P5, P6, P7, and P8, respectively. The evaluations
were carried out between 40 and 60 cm above the ground because, as previous reports
have indicated, in this species, rot mainly occurs in the basal section of the stems [45,46].
Between 8 and 10 sensors were used, depending on the diameter of the shaft, i.e., more than
the 6 recommended by [47]. The sensors were inserted around the trunk on a horizontal
plane. The tree circumferences and distances were measured precisely via the sensors and
were recorded with Arbor-Sonic3D v5.3.125 software. Once the sensors were installed, the
transmitter boxes were placed in situ. Acoustic sound waves were generated by repeatedly
tapping each sensor with a steel hammer at the same intensity. The sensor transmitted the
sound waves and formed the data matrix. The sound velocity was automatically calculated
in the software, and a tomogram was generated [29,46,48].

The variables evaluated as indicators of wood deterioration were the wave velocity in
m/s (WV), incidence percentage (I), and the percentage of the rotten area (RA). The radial
waves were measured, as these pass through the center of the pith and enable the better
analysis of the internal health of healthy and affected trees (Figure 2) [49].
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Figure 2. Radial velocities considered for evaluating wood decay in C. cateniformis plantations (dotted
black lines). (a) healthy tree, (b) affected tree.

The I was determined using Equation (1), which related the number of deteriorated
wood trees to the total number of trees in the plantation [50] as follows:

I =
Total tress a f f ected
Total trees evaluated

·100 (1)

Biometric, climatic, and edaphic variables were considered as predictors for wood
deterioration modelling (Tables 1 and 2). The commercial volume (CV) was calculated
using Equation (2), where π = 3.1416 and “f” is the species form factor, with a value of
0.496 [51].

CV =
π.DBH2

4
· CH· f (2)
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Table 2. Climatic and edaphic characteristics of Cedrelinga cateniformis plantations, Peru.

Variable Minimum Mean Maximum Deviation

Climatic

T◦min (◦C) 21.17 21.21 21.26 0.04
T◦mean (◦C) 26.12 26.18 26.24 0.06
T◦max (◦C) 31.08 31.17 31.25 0.09

pp
(mm·year−1) 2663.00 2680.88 2700.00 17.46

Edaphic

S (%) 27.33 62.54 81.33 18.19
Si (%) 5.33 21.25 41.67 11.97
C (%) 9.00 16.71 32.00 7.68

pH 4.50 4.64 4.77 0.11
EC (dS/m) 0.01 0.03 0.03 0.01

T◦min: minimum annual temperature, T◦mean: mean annual temperature, T◦max: maximum annual temperature,
pp: annual precipitation, S: sand, Si: silt, C: clay, EC: electrical conductivity.

Climate variables were acquired from NASA’s Global Energy Resources Prediction [52],
accessed 7 September 2023. The center point of each plantation was used as the reference
point for downloading the data, and the period considered for the analysis was 2001 to 2021.
Soil sampling was carried out in October 2022. In each plantation, a composite sample was
extracted through systematic collection, according to the methodology established by [53],
and the subsamples were extracted with a sampler tube at 30 cm depth. The samples were
sent to the Soil, Water and Foliar Laboratory of the E.E.A. Canaán–INIA for analysis.

The statistical analysis was performed with Rstudio 4.3.3 statistical software (Boston,
MA, USA). The existence of any significant differences in the wood deterioration indicator
variables (WV, I, and RA) between plantations was evaluated, and the mean values for
the individuals in the same diameter classes (10 cm) in each plantation were considered
as replicates [54]. The analysis of variance (ANOVA) was conducted and the means were
compared by applying the Tukey’s HSD test (p < 0.05) in the “agricolae” package [55]. The
assumptions of normality and variance homogeneity were evaluated using Shapiro–Wilk
and Bartlett tests (p < 0.05), respectively; when the WV did not meet the required assump-
tions, the Kruskal–Wallis nonparametric test was applied. In addition, the association
between the variables through correlation tests and, subsequently, the predictor variables
(biometric, climatic, and edaphic) for the wood deterioration models were identified via
correlation. The Pearson’s correlation coefficient was determined (p < 0.05) using the cor
function in Rstudio [56]. Furthermore, in order to explain all of the existing variability of
the variables evaluated, principal component analysis (PCA) was carried out using the R
studio packages FactoMineR and factoextra [57,58].

Modelling was conducted using stepwise regression, which has been used to estimate
various forest variables in different studies [59–61]. The response variable was specified,
and a list of possible explanatory variables was provided (Equation (3)). The explanatory
variable most closely correlated with the response variable was chosen, and additional
explanatory variables were included iteratively or eliminated until no further significant
correlations between predictive variables were found [62].

Y = β0 + β1·X1 + . . . + βn·Xn + ϵ (3)

where Y is the variable indicating wood deterioration (WS, I, and RA), X1, . . ., Xn are
the explanatory variables, β1, . . ., βn are the model parameters, and ϵ is the error term.
The regression was carried out using the lm and step functions in Rstudio [63,64], and
some of the variables modelled were transformed by Ln. The statistical significance of the
regression models generated, and their parameters was verified (F and t at p < 0.05).
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3. Results
3.1. Wood Deterioration

The wood deterioration indicator variables differed significantly (p < 0.05) between
plantations (Table 3). Significant differences in the WV between the youngest plantation (P1)
and the oldest plantation (P3 and P7) were observed, with values of 1650.75 and 1293.21 and
1365.68 m/s, respectively. The highest value of I was recorded in plantation P3 (95.24%),
and was statistically significantly different from the value in plot P6 (51.66%). The RA was
highest in plantation P3, with 22.52% of the stem cross section, differing significantly from
those in plantations P1, P5, P6, and P8, in which low percentages of 1.13, 2.88, 1.16, and
2.16%, respectively, were observed.

Table 3. Comparison of the means of indicator variables of wood deterioration.

Plot Age WV
(m/s)

I
(%)

RA
(%)

P1 15 1650.75 ± 136.00 c 69.17 ± 21.67 ab 1.13 ± 0.25 c

P2 43 1537.40 ± 201.08 b 73.58 ± 20.93 ab 7.26 ± 6.10 ab

P3 53 1293.21 ± 311.74 a 95.24 ± 8.25 a 22.52 ± 2.69 a

P4 24 1585.19 ± 156.59 bc 91.67 ± 13.94 a 7.78 ± 4.45 ab

P5 24 1769.71 ± 208.54 d 88.33 ± 12.91 a 2.88 ± 0.88 bc

P6 18 1783.74 ± 118.38 d 51.66 ± 29.27 b 1.16 ± 0.79 c

P7 33 1365.68 ± 295.92 a 83.73 ± 21.10 a 13.45 ± 3.9 a

P8 26 1589.28 ± 202.72 bc 58.08 ± 33.99 ab 2.16 ± 1.36 bc

Sig. Kruskal wallis (0.00) ANOVA (0.04) ANOVA (0.00)
Different letters indicate significant differences, according to Tukey or Kruskal–Wallis tests (p < 0.05), WV: wave
velocity, I: incidence percentage, RA: percentage of the rotten area.

For the young plantations, the tomograms showed regions of high WVs in the cross
section, except for small regions in the peripheral section, in which low velocities were
attributed to an edge effect (Figure 3). As the plantations aged, the WV decreased, mainly
in the stem center, indicating deterioration in the stem medulla (P7, P2, and P3).
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The WV was significantly and negatively correlated with the RA (Figure 4), so that, in
an average tree, lower speeds indicated a higher percentage of rotting. Although the I was
positively and negatively correlated with other indicator variables, the correlations were
not statistically significant.
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3.2. Relationship between Wood Deterioration and Predictive Variables

All biometric variables, except for the CH, were significantly correlated with the wood
decay indicator variables (p < 0.05) (Table 4). Age was the biometric variable most closely
correlated with the indicator variables (the WV and RA). In the edaphic variables, only
the pH was significantly correlated with a wood deterioration indicator variable (RA).
None of the climatic variables were significantly correlated with the indicator variables
(Table 4). The WV was significantly negatively correlated with age (r = −0.873). The I
was significantly and positively correlated with the DBH and CV (r = 0.721 and 0.822,
respectively). The RA was significantly and positively correlated with age, the DBH, the
TH, and pH (r = 0.858; 0.767; 0.775; and 0.758, respectively.

In the PCA, 72.85% of the variability in the data was explained by the first (46.2%) and
second (26.6%) components (Figure 5). The oldest P3 plot (53 years) yielded the highest
values of the I and RA and the lowest values of the WV. Plots P1 and P6, which were
15 and 18 years of age, respectively, yielded the lowest values of the I and RA. Regarding
the association between variables, the I and RA were positively associated with most of
the biometric variables, except for the CH. The WV was negatively associated with the I
and the RA. The climatic and edaphic variables were not associated with any of the wood
deterioration indicators, except for pH.
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Table 4. Correlations between wood decay indicator variables and predictors.

Type of Predictive Variable WV I RA

Biometric

Age −0.0873 ** 0.509 ns 0.858 **
DBH −0.413 ns 0.721 * 0.767 *
CH 0.080 ns 0.363 ns 0.102 ns

TH −0.605 ns 0.706 ns 0.775 *
CV −0.268 ns 0.822 * 0.649

Climate

T◦mean −0.318 ns 0.343 ns 0.299 ns

T◦min −0.347 ns 0.465 ns 0.440 ns

T◦max −0.369 ns 0.363 ns 0.303 ns

pp −0.371 ns 0.353 ns 0.245 ns

Edaphic

S −0.282 ns 0.178 ns 0.382 ns

Si 0.298 ns −0.213 ns −0.360 ns

C 0.232 ns −0.117 ns −0.367 ns

pH −0.635 ns 0.456 ns 0.758 *
EC 0.219 ns 0.087 ns −0.235 ns

WV: wave velocity, I: incidence percentage, RA: percentage of the rotten area, DBH: diameter at breast height
at 1.3 m, CH: commercial height, TH: total height, CV: commercial volume, T◦min: minimum temperature,
T◦mean: mean temperature, T◦max: maximum temperature, pp: precipitation, S: Sand, Si: silt, C: clay, EC:
electrical conductivity, * = p < 0.05, ** = p < 0.01, ns = non-significant.
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Figure 5. PCA plot of wood deterioration indicator and predictor variables. WV: wave velocity,
I: incidence percentage, RA: percentage of the rotten area, DBH: diameter at breast height at 1.3 m,
CH: commercial height, TH: height total, CV: commercial volume, T◦min: minimum temperature,
T◦mean: mean temperature, T◦max: maximum temperature, pp: precipitation, S: sand, Si: silt, C: clay,
EC: electrical conductivity.

3.3. Relationship between Wood Deterioration and Predictor Variables

The predictive models of wood decay, with age acting as a predictor variable for the
WV, explaining 64% of the variability in the linear model, are shown in Table 5. In the young
trees, the WV between the radial sensors was 1650.75 m/s; in the mature trees, the value
decreased steadily to 1293.21 m/s (Figure 6a). For the I, the only predictor variable was
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the CV, which explained 68% of the existing variability; both variables increased linearly;
for each unit of volume, the I increased by 26.43% (Figure 6b). A high proportion (81%)
of the variability in the RA was explained by age and the DBH; in young plantations, the
percentage was minimal, with an average of 1.1%, and there were no differences between
the diameter classes (e.g., in P1, 1% in trees of DBHs of 25 and 55 cm). In older plantations,
the highest percentage of damage, 22.5% on average, occurred in larger diameter trees
(e.g., in P3, 21.5 and 25.6% in trees of DBHs of 55 and 75 cm, respectively) (Figure 6c).

Table 5. Predictive models for indicators of wood deterioration.

Variable Model
Parameter

R2
β0 β1 β2

WV WV = β0 + (β1·Age) + ϵ 1890.1780 *** −10.7901 * - 0.64 **
I I = β0 + (b1·CV) + ϵ 50.9461 *** 26.4361 ** - 0.68 *

RA Ln(RA) = β0 + β1·Ln(Age) + β2·Ln(DBH) + ϵ −8.8233 * 1.9469 * 1.0151 * 0.81 *

WV: wave velocity, I: incidence percentage, RA: percentage of rotten area, Age (years), DBH: diameter at breast
height at 1.3 m (cm), CV: commercial volume (m3), Ln: natural logarithm, β0, β1, β2: parameters of the models,
ϵ: error term, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, R2: coefficient of determination.
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4. Discussion
4.1. Wood Deterioration

The wood quality indicators varied significantly among plantations. This can be
attributed to the influence of environmental conditions and the tree age on the wood
characteristics and properties [65].

The velocity at which sound waves are propagated in wood depends on the tree
species, moisture content, measurement direction, and density [66,67]. In general, the wave
velocity is correlated with the rigidity of the wood and the lignin content. Rigid wood will
propagate the sound faster, and wood with a high moisture content will propagate the
sound waves more slowly because the capillaries contain water rather than air [68]. One
of the basic principles of tomography states that the first wave to reach a sensor will have
travelled the fastest path. However, in the case of decomposed wood, the wave travels more
slowly [69], increasing the transmission time from the sender to the receiver [70]. Relative
to the WV, which was higher in young plantations (e.g., P1 and P6, with 1650.75 and
1783.74 m/s), these values reflect healthy wood and transmission times that are consistent
with those reported in previous studies [67,71–73]. The slowest WVs were recorded in the
oldest plots (e.g., 1293.21 and 1365.68 m/s in P3 and P7). Acoustic tomography analysis
demonstrated that C. cateniformis was susceptible to the deterioration of the medullary area,
as observed in plots P7, P2, and P3 (Figure 3). This condition was reported for species
in plantations in the Amazon region [40]. The WV was significantly correlated with the
RA (r = −0.906) (Figure 4). The correlation depended on the time and speed of the wave
propagation and the ability of acoustic tomography to identify internal defects in tree
trunks [67,71–74].

4.2. Relationship between Wood Deterioration and Predictor Variables

Wood deterioration was closely related to the biometric variables (Table 4 and Figure 5),
and the positive association showed that older and larger trees were more susceptible to
stem rot. In previous studies with other tree species, wood decomposition was found to
increase proportionally with age [2,75–77]. The incidence in C. cateniformis was directly
related to age [2,45,75], and over-mature trees were found to have a high percentage of
medullary rot [2,75]. The susceptibility of the medullary region to deterioration may be
due to the small amount of lignin and the subsequent lack of rigidity. The absence of lignin
generates a suitable environment for the proliferation of fungi [69,78], and the species is
therefore predisposed to attack by pathogenic fungi that can cause wood decay [2,45,75].
The pathogens that cause rotting in the stem center enter via the root system and colonize
the tree upwards through the heartwood xylem [4]. The humid conditions at the base of
the tree in contact with the soil favor the development of xylophages [5,32], and it has been
reported that the humidity influences the proliferation and decomposition of wood [79].

Minimum and maximum temperatures and precipitation affect wood deterioration,
and higher or lower levels (extreme rain, extreme heat, extreme cold, strong winds) can
cause stress in tree species [80]. Changes in climatic variables may be beneficial for decom-
poser organisms [80,81]. In the case of C. cateniformis, climatic conditions do not directly
affect wood deterioration (Table 4), but extreme events could create conditions that promote
the development of pathogens, considering the low tolerance of the species to flooding [82].
The low (or no) correlation between the deterioration indicators and edaphic variables
may be associated with the plasticity of C. cateniformis, although it requires clayey, acidic
soils with low (or zero) levels of stoniness [83,84]. The RA was the only variable that was
positively and significantly correlated with pH (r = 0.758) (Table 4), probably because C.
cateniformis growing in alkaline soil is more susceptible to wood deterioration due to the
acidophilic nature of the species [85,86].

4.3. Wood Deterioration Modelling

The models yielded robust coefficients of determination, with values ranging from
0.68 to 0.93 (Table 5). Values close to 1 indicate the strongest relationship between the



Forests 2024, 15, 778 12 of 16

measured values and the predicted values [80,87]. The main model predictor variables
were age and the DBH (the WV and RA), which were strongly correlated with the wood
deterioration indicators (Table 4). The model estimating the WV yielded a negative param-
eter β1, indicating that the propagation of sound waves between sensors was slower in
older trees (Figure 6a). The CV acted as a predictor variable for the I, and the parameter β1
demonstrated a positive value, indicating that trees with a larger CV are more susceptible
to wood deterioration, as reported by in other studies [2,88].

The percentage of the rotten area was influenced by the tree age and diameter. Young
plantations had a minimum percentage of the rotten area, while older plantations (53 years)
had a higher percentage, ranging from 21.5% to 25.6%. The silvicultural rotation of C.
cateniformis occurs at a young age, but limited diameter growth and immature wood both
restrict the use of timber [36,89]. The plantations should therefore be maintained until an
optimal age. According to the study findings, in trees of 25–30 years old, with a DBH from
45.0 to 48.5 cm and a CV from 0.9069 to 1.0276 m3, the WV ranges between 1620.43 and
1566.47 m/s, the I between 74.9 and 78.1%, and the RA between 3.9 and 5.9% (Figure 6b,c).
The loss of relative resistance was twice as high in trees with a high percentage of cavities
than in trees with a low percentage of cavities (Figure 6a–c) [90]. Thus, plantations should
not be maintained for more than 30 years, as this could lead to economic losses. The
condition of the species beyond 30 years will directly affect the harvestable volume at the
time of harvesting [2,88].

Acoustic tomography is a useful tool for identifying damaged areas of tree stems [91].
The proposed inspection protocols can assist in detecting such damage and obtaining more
detailed data for managing forest resources [71]. This study proposes the use of this tool
to enable the better control of the quality of C. cateniformis wood in forest plantations,
generating essential information for timber quality control in plantations, and promoting
the planting of the species in the Peruvian Amazon [36]. This is essential in the forestry
sector in Peru, which is currently undervalued and faces various challenges that must be ad-
dressed [83,84,92]. The results of this study are consistent with those of the National Forest
Strategy, which promotes adaptive research for efficient and diversified production [80,93].

5. Conclusions

The study examined tree decay in eight C. cateniformis Ducke plantations of ages
between 15 and 53 years in the Peruvian Amazon by using acoustic tomography data. The
species began to show variations in trunk pith at 15 years, with a minimal incidence of
rot, and a higher incidence of damage due to rot and cavities at 30 years. Based on the
information obtained, we recommend harvesting the species at a maximum age of 30 years
in order to ensure the presence of a higher percentage of usable volumes of wood for
producers. New, less labor-intensive methods of evaluating wood degradation in forestry
plantations should be developed using acoustic tomography to obtain accurate data.
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