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Abstract: Land degradation is a permanent global threat that requires an interdisciplinary approach
to addressing solutions in a given territory. This study, therefore, analyses environmentally sensitive
areas to land degradation using the Mediterranean Desertification and Land Use (MEDALUS) and
Geographic Information System (GIS) method through a multi-criteria approach in the district of
Florida (Peru). For the method, we considered the main quality indicators such as: Climate Quality
Index (CQI), Soil Quality Index (SQI), Vegetation Quality Index (VQI), and Management Quality
Index (MQI). There were also identified groups of parameters for each of the quality indicators
analyzed. The results showed that 2.96% of the study area is classified as critical; 48.85% of the surface
is classified as fragile; 15.48% of the areas are potentially endangered, and 30.46% are not threatened
by degradation processes. Furthermore, SQI, VQI, and MQI induced degradation processes in the
area. Based on the results, five restoration proposals were made in the study area: (i) organic manure
production, (ii) cultivated and improved pastures and livestock improvement, (iii) native forest
restoration, (iv) construction of reservoirs in the top hills and (v) uses of new technologies. The
findings and proposals can be a basic support and further improved by decision-makers when
implemented in situ to mitigate degradation for a sustainable use of the territory.

Keywords: land degradation; quality indicators; spatial analysis; ESAI; sustainability

1. Introduction

One of the most critical global environmental problems is soil degradation [1,2]. The
main causes of degradation are over-tillage, inappropriate crop rotations, overgrazing,
deforestation, mining, infrastructure construction and urban sprawl [3,4]. It has been esti-
mated that one fifth of the land is degraded and that 5–10,000 Mha are degraded per year [5,6].
This problem affects 40% of agricultural land, costing approximately USD 500 billion per
year [7]. Consequently, it limits agricultural production, since, by 2050, ~70% of current
agricultural production will be required to supply the world’s population [8].

In the last decade, several methodologies have been developed to identify and evaluate
degraded areas. Among the most widely used methods for assessing land degradation and
desertification are field studies [9]. Some studies use spectral biophysical indicators [10–12],
but others integrate social, economic, and environmental factors [13,14]. A large number
of mathematical models have also been proposed as methods for quantifying soil sensi-
tivity to desertification and detecting areas under high vulnerability [15]. However, the
Mediterranean Desertification and Land Use (MEDALUS) method, successfully developed,
has been largely used to identify lands sensitive to degradation [16]. The methodology
was validated and applied in Mediterranean conditions [17–19]. Subsequently, it has been
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applied in non-Mediterranean areas [20–22], allowing for adopting preventative measures
to tackle degradation process [23]. An integrated representation of land degradation pro-
cesses can be achieved using qualitative and quantitative methods [9,24]. Thus, the use of
geographic information system (GIS) tools and remote sensing (RS) techniques, key for soil
assessment, enables the analysis, assessment, monitoring, and representation of degraded
soil dynamics [25].

Peru is also affected by land degradation; as of recent data, one-third of its popu-
lation works in the agricultural sector, with a 29.6% contribution to the gross domestic
product (GDP) [26,27]. Traditional agricultural practices, which include slash-and-burn
activities, have a negative impact on soil quality [28,29]. In Peru, overgrazing, mining,
and forest fires are the drivers for about 180,123.79 km2 of land degradation [30], and
this problem spreads throughout the country [31–40]. In the department of Amazonas in
2020, 115.72 km2 was deforested, and 10878.04 km2 was degraded [30,41]. Experiences
have been documented and guidelines implemented for forest restauration in degraded
ecosystems [42–46]. However, further efforts to estimate degradation require an in-depth
process with a multi-criteria approach, such as MEDALUS [47]. Notwithstanding, reducing
degradation risks is a difficult and complex process, especially in small areas [15].

In this research work, we applied the MEDALUS methodology to analyze environmen-
tally sensitive areas to soil degradation in the district of Florida (Amazonas, Peru). For this
purpose, (i) we evaluated environmentally sensitive areas to degradation; (ii) we applied
four main indices of the original MEDALUS method: climate quality index (CQI), soil
quality index (SQI), vegetation quality index (VQI), and management quality index (MQI);
(iii) we analyzed the possible causes of land degradation; and (iv) we aim to contribute
with ecological restoration strategies in Amazonas lands.

2. Materials and Methods
2.1. Study Area

The district of Florida is located in northern Peru between parallels 5◦45′25′′ and
5◦60′ South latitude and meridians 77◦51′ and 78◦8′ West longitude, in the province of
Bongará in the southeast of the department of Amazonas (Figure 1). The study area covers
222.40 km2, at an altitude of 1500 to 3800 m a.s.l. The climate is characterized by a humid
tropical climate with average annual temperature and precipitation between 14.3–17 ◦C
and 682–1092 mm, respectively, and a relative humidity of 87% [48]. There are two distinct
seasons during the year, the dry season from May to October and the wet season from
November to April [49,50]. The physiography is characterized by high mountains with
steep to extremely steep slopes [51]. In turn, the vegetation cover is represented by alti-
montane forest, montane forest, and jalca formation [52]. The soil type is developed on
residual sandstone and limestone materials with AC profiles from medium to moderate
texture and pH between 4.5 to 7.0 (Condor and Apurimac Series) and ABC profiles with
medium to moderately fine texture, good drainage, and strongly acidic pH (3.9 to 4.8)
(Calera I-Pillualla and Calera I-Teata Associations) [53].

In the most recent census conducted by the Statistics and Informatics Institute (INEI),
Florida district had a total population of 5999 inhabitants, distributed among 2117 homes [54].
Most of the population here depend on livestock and agriculture for their livelihoods [31,55],
especially the production of dairy products, which are distributed to local and regional
markets [48]. These activities lead to deforestation, overgrazing, soil degradation, and
water pollution [31,56,57], causing the significant loss of biodiversity; in fact, between
2001 and 2019, around 2270 m2 ha was deforested, causing land degradation [41]. This
is a consequence of agricultural expansion, the installation of new pasture areas, and the
immigration of people to the area mainly from Cajamarca [31,48].
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Figure 1. Localization of Florida district in the department of Amazonas (Peru).

2.2. Data Used and Processing

To generate the mapping of environmentally sensitive areas susceptible to degradation
in district Florida, the ASTER digital elevation model (DEM), obtained from (https://
lpdaac.usgs.gov/, accessed on 16 June 2022) with a spatial resolution of 30 m, was used
with an accuracy of ±16 m [58]. The DEM generated the slope and terrain aspect.

For the calculation of the aridity index and erosivity, raster data of monthly precip-
itation from 1970 to 2000 with a spatial resolution of 1 km2 were used [59], available at
(http://www.worldClim.org, accessed on 29 May 2022). The geological map was obtained
from the Amazonas Ecological Economic Zoning (ZEE-A) [60]. The map regarding mass
movement susceptibility was obtained from the Geological, Mining and Metallurgical
Institute (INGENMET) [61]. We used a Sentinel-2 space satellite image, obtained from
the United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov/,
accessed on 5 April 2022), to generate the coverage map. The image was acquired on
2 August 2019. Automatic supervised classification using the maximum likelihood algo-
rithm with ArcGIS version 10.5 was used [31,32,62,63]. Therefore, coverages were classified
into five classes, namely, urban area, grassland, pasture and crops, water bodies, and forests.
Thematic accuracy was evaluated based on 210 validation points, randomly distributed for
each class and the whole study area, obtaining a kappa index of 92%.

Soil organic matter (SOM) and textural class layers were generated from specific data
of 91 arable land samples collected in field sampling (Figure 1). The approximate arable
sampling depth was 25 cm. The samples were distributed according to the variability of
the physiographic units, accessibility to the area and based on the regulations (D.S. N◦

13-2010-AG), a document for soil sampling by the Ministry of Agriculture (MINAGRI) [64]
in Peru. These samples were analyzed at the Water and Soil Research Laboratory (LABISAG)
of the National University Toribio Rodríguez de Mendoza de Amazonas (UNTRM). Then,
the results of the SOM samples were interpolated by the Ordinary Kriging (OK) method
using the geostatistical analysis extension of ArcGIS 10.5 based on three models Gaussian,
spherical and exponential [65–70]. Cross-validation statistically reported that the Gaussian
model achieved the best results with a with a coefficient of determination (R2) of 0.04 and
root mean squared error (RMSE) of 1.85. On the other hand, to determinate textural class,
sand, silt, and clay data were individually interpolated with the Gaussian model and then
integrated into the QGIS 3.12 raster calculator to obtain the textural class [71]. In sum,
12 thematic layers were constructed (constituent parameters of the indicators) and classified
as stated in the United States Department of Agriculture (USDA) at a spatial resolution
of 30 m.

https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
http://www.worldClim.org
https://earthexplorer.usgs.gov/
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2.3. Methodology

MEDALUS, a successful tool for assessing, mapping, and identifying environmen-
tally sensitive areas (ESAs), using the environmentally sensitive areas index (ESAI), was
employed for this methodology [15,23]. The simplicity and flexibility of the model allows
for adjusting or changing the number of indicators (parameters or variables) to be used
to assess the quality [9,15,18,22,47,72,73]. In that sense, users can easily add and adjust
further spatial factors according to local conditions [15,23]. It is calculated according to
the geometric mean value of indices SQI, CQI, VQI, and MQI. Figure 2 shows the Method-
ological flowchart used to evaluate Environmentally Sensitive Areas to degradation in
Florida district.
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2.3.1. Soil Quality Index

Desertification and land degradation are determined by the cohesive strength between
soil particles, water retention capacity, level of development of the surface horizon, texture,
and structure [74]. The soil quality involves measuring fertility and predisposition to
be preserved against climate hazards using agricultural techniques and intrinsic charac-
teristics [46,74]. Therefore, to determine the SQI, four parameters were considered and
evaluated, three soil characteristics (parent material, soil texture, and topsoil organic matter)
and topography (slope), the result was obtained by geometric mean (Table 1). Scores were
then assigned to each parameter [16,21,75]. The SQI, finality, was calculated using the
following Equation (1):

SQI = (parent material × slope × soil organic matter × soil texture)1/4 (1)

2.3.2. Climate Quality Index

The CQI reflects the impact of climatic variation on land degradation and desertifi-
cation, where precipitation, the most important factor, influences drainage and soil water
capacity [16,76,77]. To determine this index, three parameters were evaluated: aridity,
soil erosion, and aspect indices (Table 2): namely the aridity index, which influences the
availability of water for plants [16]; soil erosion, which is the estimate of the aggressiveness
of rainfall [23]; and aspect, which is driven by the distribution of solar irradiation surface
temperatures. The three have important effects on vegetation growth and the rate of soil
erosion [76,78]. Each parameter was measured in the following way:
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Table 1. Parameters, description, classes, and quality scores used for soil quality parameters.

Parameters Description Classes Quality Scores

Parent material

Pucara group Low 1.55
Mitu group

Medium
1.60

Sarayaquillo formation, Goyllarisquizga
group, and Chulec formation 1.65

Chonta formation High 1.70

Slope

<2 Nearly level Low 1
2–6 Gentling sloping Low 1.2

6–12 Moderately sloping Medium 1.4
12–18 Strongly sloping Medium 1.6
18–25 Moderately steep High 1.7

25–35 Steep High 1.8
35–60 Very steep High 1.9
>60 Very steep High 2

Organic matter
content

>6.0 High 1
2.1–6.0 Medium 1.3
2.0–1.1 Low 1.6

<1.0 Very low 2

Soil texture

Loam, Sandy slay loam, Sandy loam,
Loamy sand, Clay loam good Very Low 1

Sandy clay, Silt loam, Silty clay loam
moderate Low 1.2

Silt, And clay, Silty clay poor Medium 1.6
Sand very poor High 2

Table 2. Parameters, description, classes, and quality scores used for climate quality parameters.

Parameters Description Classes Quality Scores

Aridity index

<0.05 Hyper-arid zone Very high 2
0.05–0.2 Arid High 1.8

0.2–0.5 Semiarid Medium 1.60
0.5–0.65 Dry subhumid Medium 1.4

0.65–1 Subhumid Low 1.2
>1 Humid Very low 1

Erosivity

0–60 Very low Very low 1
60–90 Low Low 1.2

90–120 Moderate Medium 1.5
120–160 Severe High 1.8

>160 Very severe Very high 2

Aspect

North, Northwest, Northeast,
West, flat areas Low 1

South, Southwest, Southeast,
East High 2

Aridity Index

The aridity index (AI) was estimated using the following Equation (2), set by the United
Nations Environment Programme (UNEP) [79], where P is mean annual precipitation and
PET is potential evapotranspiration, calculated by the method of Thornthwaite.

AI = P/PET (2)
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Soil Erosion

It was estimated according to the modified Fournier index (MFI) [80] by the following
Equation (3) where Pi is monthly precipitation and P is annual precipitation.

MFI = ∑12
i 1 Pi2/P (3)

Finally, descriptions and scores of the climate quality parameters were assigned [20,22,23].
The CQI was calculated using the following Equation (4).

CQI = (Aridity index × erosivity × aspect)1/3 (4)

2.3.3. Vegetation Cover Index

Vegetation makes a vital contribution to preventing landslides by fixing soil with the
root system [81] and by rain obstruction with foliage [82]. Vegetation thus reduces the
impact of raindrops and runoff, promoting water infiltration, enriches the soil surface with
organic matter, and improves its structure and cohesion [74]. In that sense, to determine
the VQI, three parameters were considered and evaluated (Table 3): drought resistance,
which directly indicates the ability of an ecosystem to adapt to climatic aridity and severe
drought events [78]; erosion protection, which is provided by plants against soil erosion;
and vegetation cover, which reduces runoff and loss of sediment [23]. Descriptions and
quality scores for the three parameters of vegetation quality were assigned according to
Pravalie et al. [22]. The VQI was obtained using the Equation (5).

VQI = (Drought resistance × Erosion protection × Vegetation cover)1/3 (5)

Table 3. Parameters, description, classes and quality scores used for vegetation quality parameters.

Parameters Description Classes Quality Scores

Drought resistance

Forests Very low 1
Grasslands Medium 1.4

Pastures and crops High 1.7
Rainfed crops; bare floors Very High 2

Erosion protection

Forests Very low 1
Pastures and crops Low 1.3

Grasslands Medium 1.6
Rainfed crops; bare floors High 2

Vegetation cover
Forests, Grasslands Low 1
Pastures and crops Medium 1.8

Rainfed crops; bare floors High 2

2.3.4. Management Quality Index

The MQI assesses the anthropogenic impact on the environment through the various
anthropogenic activities (overgrazing, water supply, and agriculture), which lead to land
degradation and desertification [9,22]. The MQI was calculated by combining agricultural
intensity and landslide (Table 4). The latter proposed by Momirović et al. [23] and the
hazard/susceptibility assessment thereof. Descriptions and quality scores for the MQI
parameters were assigned as follows: for agricultural intensity according to Salvati and
Bajocco [19] and Pravalie et al. [22] and for landslide according to Momirović et al. [23]. The
MQI was evaluated as the product of the aforementioned parameters using Equation (6).

MQI = (agricultural intensity × Landslides)1/2 (6)
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Table 4. Parameters, description, classes, and quality scores used for management quality parameters.

Parameters Description Classes Quality Scores

Agricultural intensity
Forests Low 1

Grasslands, pastures and crops Moderate 1.5
Rainfed crops; bare floors High 2

Landslides

Stable terrain Very low 1
Conditionally stable slope Low 1.4

Fossil landslides
Medium

1.5
Dormant landslides 1.6

Active landslides with dormant sliding process High 1.8
Active landslides with present sliding process Very high 2

2.3.5. Environmentally Sensitive Areas (ESA)

The environmentally sensitive areas (ESA) to degradation were determined using SQI,
CQI, VQI, and MQI, which were integrated in the QGIS raster calculator. The environmen-
tally sensitive areas index (ESAI) of the studied area was calculated from Equation (7) based
on the MEDALUS approach [16]: Finally, correlations were calculated between indices
(SQI, CQI, VQI and MQI) using the Band Collection Statistics tool in ArcGIS [23,83].

ESAI = (SQI × CQI × VQI ×MQI)1/4 (7)

3. Results
3.1. Spatial Assessment of Constituent Parameters of Quality Indicators

Figure 3 show the 12 geographic parameters processed. It highlights significant spatial
differences in terms of land sensitivity to degradation in the study area. The constituent
parameters in SQI were shaped by the geology that was represented by Mitu Group, which
are reddish layers composed of reddish-toned sandstone conglomerates (Figure 3a). On the
other hand, the slope presented gradients ranging from flat to very steep (Figure 3b). In the
study area, the organic matter content was distributed from very low to high (Figure 3c).
Soil texture was largely sandy clay loam (in the center-east in the study area), with fine
granular structure and moderately slow permeability (Figure 3d).

As for the CQI constituent parameters, the study area is characterized by continuous
rainfall, consequently, and the area is classified as nonarid (Figure 3e); however, the
aggressiveness of rainfall generates low to high erosivity (Figure 3f). Aspect classes varied
from low to high, which has a positive impact on vegetation growth but facilitates erosion
(Figure 3g). Meanwhile, the VQI parameters, as expected, reflect the fact that due to
agricultural and livestock practices, there is limited protection against erosion (Figure 3i) as
a result of loss of vegetation (Figure 3j), generating low resistance to drought (Figure 3h).
Finally, among the MQI parameters, the agricultural intensity, largely rated as moderate
(Figure 3k), positively affects the susceptibility of the land to landslides (Figure 3l).

3.2. Spatial Assessment of Quality Indicators

Based on the 12 geographic parameters processed (Figure 3), the 4 quality indicators
(SQI, CQI, VQI, and MQI) were obtained (Table 5 and Figure 4). The first indicator, SQI
of the total area 88.61% (197.07 km2), is of moderate quality, followed by low quality of
6.99% (15.54 km2) and high quality of 2.16% (4.8 km2) (Table 5). Moderate quality covers
mainly areas of extensive agriculture and livestock farming, distributed in the west and
central-east of the study area (Figure 4a), with low quality and high quality throughout
the west. The CQI analysis revealed that in the study area, 52.14% (115.97 km2) was of
high quality, and 45.61% (101.44 km2) was of moderate quality in relation to the total
area (Table 5).
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Table 5. Area (km2) and percentages (%) corresponding to the four indicator quality classes in
Florida district.

Indicator Quality Description Range of Scores Total Area
(km2) %

SQI
High <1.13 4.8 2.16

Moderate 1.13–1.45 197.07 88.61
Low >1.46 15.54 6.99

CQI
High <1.15 115.97 52.14

Moderate 1.15–1.81 101.44 45.61
Low >1.81 - -

VQI
High <1.13 101.03 45.43

Moderate 1.13–1.38 113.16 50.88
Low >1.38 3.22 1.45

MQI
High 1–1.25 118.37 53.22

Moderate 1.26–1.50 97.17 43.69
Low >1.51 1.88 0.84

Urban area 0.74 0.33

Lake Pomacochas 4.25 1.91



Sustainability 2022, 14, 14866 9 of 20

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

high quality, and 45.61% (101.44 km2) was of moderate quality in relation to the total area 

(Table 5). 

Table 5. Area (km2) and percentages (%) corresponding to the four indicator quality classes in Flor-

ida district. 

Indicator Quality Description Range of Scores Total Area (km2) % 

SQI 

High <1.13 4.8 2.16 

Moderate 1.13–1.45 197.07 88.61 

Low >1.46 15.54 6.99 

CQI 

High <1.15 115.97 52.14 

Moderate 1.15–1.81 101.44 45.61 

Low >1.81 - - 

VQI 

High <1.13 101.03 45.43 

Moderate 1.13–1.38 113.16 50.88 

Low >1.38 3.22 1.45 

MQI 

High 1–1.25 118.37 53.22 

Moderate 1.26–1.50 97.17 43.69 

Low >1.51 1.88 0.84 

Urban area   0.74 0.33 

Lake Pomacochas   4.25 1.91 

  

Figure 4. Spatial representation of quality indicators: (a) SQI, (b) CQI, (c) VQI, and (d) MQI. 

The indicator CQI showed moderate to high quality and was distributed in the west 

and east throughout the study area (Figure 4b). Therefore, this indicator may contribute 

less to the aridity process, which is confirmed by the limited presence of the low class in 

the CQI. 

The vegetation quality assessed using the VQI (Figure 4c), reported from the total 

area that 50.88% (113.16 km2) was of moderate quality, 45.43% (101.03 km2) was high qual-

ity, and 1.45% (3.22 km2) of low quality (Table 5). Moderate quality zones, therefore, are 

Figure 4. Spatial representation of quality indicators: (a) SQI, (b) CQI, (c) VQI, and (d) MQI.

The indicator CQI showed moderate to high quality and was distributed in the west
and east throughout the study area (Figure 4b). Therefore, this indicator may contribute
less to the aridity process, which is confirmed by the limited presence of the low class in
the CQI.

The vegetation quality assessed using the VQI (Figure 4c), reported from the total
area that 50.88% (113.16 km2) was of moderate quality, 45.43% (101.03 km2) was high
quality, and 1.45% (3.22 km2) of low quality (Table 5). Moderate quality zones, therefore,
are exposed to degradation; most of this land is used for agriculture and livestock farming.
While the high-quality zones is extended by forests with little anthropic intervention, the
low-quality zones are characterized by barren lands and rainfed crops.

The MQI of the study area, 53.22% (118.37 km2), is characterized by forested areas
with fragments of small crops (Figure 4d). 43.69% (97.17 km2) of the territory presents
moderate management and is generally located in pastures and crops. On the other hand,
only 0.84% (1.88 km2) reports low management quality and is located in barren soils and
urban crops.

3.3. Environmentally Sensitive Area Index (ESAI)

The spatial analysis of the ESAI final product of the four indices (SQI, CQI, VQI, and
MQI) pointed out lands highly sensitive to degradation throughout the study area. The
areas in the critical classes (C1, C2, and C3) represented 2.96% with scores > 1.38 and clearly
are of great importance in terms of sensitivity to degradation (Figure 5 and Table 6).
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Table 6. Environmentally sensitive areas to degradation in km2 and %, in Florida district.

Class Sub Class Range of Scores Total Area (km2) %

Non-affected N <1.17 67.74 30.46

Potential P 1.17–1.22 34.43 15.48

Fragile
F1 1.23–1.26 41.72 18.76
F2 1.27–1.32 48.38 21.75
F3 1.33–1.37 18.56 8.34

Critical
C1 1.38–1.41 3.47 1.56
C2 1.42–1.53 2.68 1.21
C3 >1.53 0.44 0.20

Urban area 0.74 0.33

Lake Pomacochas 4.25 1.91

The fragile class (F1, F2, and F3) covers the most area, 108.65 km2 (48.85%), with
respect to the other classes, while the potential class (P) covers 15.48% and the non-affected
class (N) covers about 30.46% areas in Florida (Figure 5). The water body (lake Pomacochas)
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and urban area, which represent 1.91% and 0.33%„ respectively, were not included in
the calculation.

In critical areas we found bare soils, non-irrigated crops, eroded soils and abandoned
lands, while the fragile class, spread both in the flat parts and largely throughout the
study territory, were found mainly on agricultural and livestock lands. Meanwhile, in
the potential class areas, there are small patches of natural vegetation and occasional
silvopastoral systems. Finally, the non-affected areas with no intervention at all included
forests distant from urban populations or on steep slopes.

3.4. Validation of the Index of Environmentally Sensitive Areas

Field observations throughout the study area revealed critical areas (C1, C2, and C3),
and fragile areas (F1, F2, and F3), which were subject to severe economic and ecological
land decline (Figure 6). The validation results were consistent with the theoretical data
characterizing the ESAI’s three critical and fragile classes (Table 6). Therefore, several
forms of in situ land degradation were concretely identified in the study area, especially
in human-intervened areas (Figure 6a). Forested areas that have been transformed into
pastures for cattle raising (Figure 6b–e) are over-exploited with little vegetation, which
favors erosion and active landslides and consequently land degradation in the study area
(Figure 6f–i). In addition, there are partially developed soils (Figure 6j,k) with degradation
processes of the granular structure (Figure 6l), and reddish soils with a sandy clay loam
texture (Figure 6m).

3.5. Correlation Coefficients between Quality Indices

Table 7 displays the correlation coefficient between the indices (SQI, CQI, VQI, MQI)
and the ESAI. The CQI showed the lowest correlation (0.05), in relation to the VQI (0.79),
SQI (0.86), and MQI (0.93).

Table 7. Correlation between quality and ESAI indices.

Indices SQI CQI VQI MQI ESAI

SQI 1 −0.11 0.53 0.78 0.86
CQI −0.11 1 −0.46 −0.27 0.05
VQI 0.53 −0.46 1 0.85 0.79
MQI 0.78 −0.27 0.85 1 0.93
ESAI 0.86 0.05 0.79 0.93 1

3.6. Ecological Restoration Proposal

The results of the ESAI identified that land in the critical class (2.96%) covers a smaller
percentage of the studied territory than land in the fragile class (48.85%); hence, taking
corrective measures may improve soil quality in the long term. It is clear that degradation
is a complex process involving a holistic approach [84]. Specifically, we provide five pro-
posals, in contribution to the Sustainable Development Goals (SDG) particularly 15.3, by
2030 [15,84,85]. Restoration should focus on the following proposals: (i) organic manure
production, (ii) cultivated and improved pastures and livestock improvement, (iii) native
forest restoration (iv) construction of reservoirs in the top hills, and (v) uses of new tech-
nologies (Figure 7). However, for these activities to be implemented, local stakeholders and
institutions must be involved, and committed with clear ideas and leadership [15,84,85].
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The public and private sectors’ involvement in land restoration processes, is definite-ly,
a good way to achieve sustainable development goals [84]. Some governmental programs
related to pasture and livestock improvement, and application of production technologies
may contribute to land restoration [15,48,86,87], like the production of organic manures
could increase soil fertility, reduce soil erosion [15]. It could also mitigate fragile areas in
this sector.

It is important to install a forest nursery with native plants for the production of
seedlings to accelerate forest succession on degraded land [48,88]. These native species may
be Mahogany (Swietenia macrophylla King), Alchornea sp., Parathesis sp., Alnus acuminata [48],
Cedrelinga cateniformis, Ceiba pentandra, Apuleia leiocarpa, Cariniana decandra and Cedrela
montana [15,89–91]. Another alternative, also practiced in Florida district, is silvopastoral
systems (SPS), giving several benefits (fertilizing the soil, providing better forage, providing
a high-protein diet for livestock and essential chemical elements) [92–95]. This practice can
be retributed to farmers by environmental services payment [96].

The construction of friendly environmentally reservoirs for water storage, strategically
located at the top of the hill on agricultural land or pasture, will allow better distribution of
water through gravity pipe networks, which could be used in various local activities [15].
The improvement of firewood stoves and anaerobic biodigesters will contribute to fuelwood
and electricity saving, mitigating greenhouse gases [97–99]. Once implemented, it is
important to continuously monitor and raise awareness in the communities.

4. Discussion
4.1. On Quality Indicators

The SQI, more than 85% of Florida’s territory is classified as moderate, which may
result in two possible scenarios in the near future. In The first scenario low quality land
could increase due to anthropogenic activities, and the second high quality land could
increase with good land management, both depending on human activities. On the other
hand, to determine the SQI, the parameters of parental material, slope, organic matter and
texture were used for the flexibility of MEDALUS [9,15,18,22,47,72,73]. External parameters
based on the characteristics in degraded areas can successfully lead to ecological succession
for re-establishment of secondary forests and cost-effective restoration [48,100]. In Florida,
there is a variation in organic matter, which varied from medium to high. This is consistent
with a previous study [48], where it was determined that the organic horizon is thicker in
forests than in grasslands. This parameter consequently provides so far nutrient availability,
gas exchange and water supply to the soil [101]. Nevertheless, it should be noted that
SOM content responds rapidly to anthropogenic manipulation and alteration, in contrast
to texture and mineralogy, which change slowly over time [102–104]. Regarding soil
texture, soils are mostly sandy loam clay loam, according to the classification of Komas
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et al. [16], classified with a very low susceptibility, consequently, the soil is not of low quality.
However, Walentowski et al. [48], found high percentages of sandy soils under forests
and more clay conditions in grasslands. Unfortunately, slope is one of the most important
parameters driving degradation in different soil types [75]. In this study, we confirm
such statement as slopes greater than 21% present high susceptibility to soil degradations,
as it facilitates soil erosion [9,75,77]. Finally, SQI should be understood as the degree of
sensitivity to soil degradation according to the parameters used and not as agronomic
quality [105].

With regard to CQI, more than 50% is qualified as high quality and more than 40%
as moderate quality, this could be related to the high precipitation (up to 1092 mm per
year) [48,106]. This high precipitation means that the study area does not present arid
lands, and as a consequence, there is no low class in climatic indicator. In this sense, aridity
is an indicator of desertification and degradation [9,47]. However, regular rainfall causes
soil erosivity [23,75], and here a classification of susceptibility to erosivity from low to
high was determined. On the other hand, we expect that the aspect and type of climate of
the Humid Cold Tropics [48], characteristic of the study area, influence even in the CQI,
which is the reason for moderate to high CQI values. As supported by Xu et al. [76] and
Salvati et al. [78], the aspect has important effects on vegetation growth and soil erosion
rate. However, we suggest that further studies should be conducted to evaluate the effect
of climate change in Amazonia and other areas of the world, as there is a probability that
new areas will become arid in a short period of time [9,15,20,23,47,74,77,107–109].

The VQI, moderate class predominates with more than 50%, it is spread over agricul-
tural and livestock lands. Lamentably, the forests have been exploited for timber sales since
1960 [48,106], and the establishment of pasture and crop plots, which practice continues
today [31,48]. Forests mitigate degradation processes, in comparison to fragmented forests
which ease the sensitivity of areas [73]. Therefore, cultivated and bare soils present a greater
vulnerability to erosion and drought, unlike forests that are well protected by their root sys-
tem and foliage [74]. Walentowski et al. [48], point out that abandoned pastures, degraded
areas left for succession, do not guarantee landscape sustainability. By continuing with
these negative practices, low quality areas of the VQI may increase in the future. Positive
or negative changes will therefore occur depending on forests management.

The results reflect the need for further policy work on conservation, environmental
education, training and monitoring programs for agricultural producers locally and nation-
ally. It is important to coordinate the work with public and private organizations. Likewise,
restoration actions should be taken with experiences from the country [43,110,111] and
elsewhere [15,88,112,113]. We consider that immediate intervention should be given to low
and moderate quality from the management point of view, for a sustainable use of the land.

4.2. On the Environmentally Sensitive Areas Index

The spatial analysis of the ESAI reported that the critical classes cover >2% of the
territory, the fragile class with more than 45% of extension, while the potential class covers
>15% and the unaffected >30%. In fact, the fragile class predominates in the study area and
is similarly described as such by Walentowski et al. [48]. The ESAI depends directly on the
SQI, CQI, VQI and MQI indices and these in turn depend on the parameters. In that sense,
the major triggering indices that determine fragility were the VQI, SQI and MQI and are in
agreement with other studies [9,23,75]. The results of the VQI and SQI are greater than 50%
in moderate quality in the study area, thus a direct relationship with the low percentage
of the critical area is inferred. Although, according to the results of the MQI there is a
high-quality management of 53%, however, in comparison with the moderate quality it is
close to this value. Therefore, there is still a deficiency in the management of sustainable
land management. On the other hand, the high and moderate quality results of the CQI
contribute to the fact that the critical areas do not increase due to the absence of the low
class and are related to aridity [9,74]. Likewise, the correlation coefficients express in the
same way the most triggering indices were VQI, SCI, and MQI, and the least triggering was
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CQI, in relation to the ESAI. The correlation values of the indices closer to one influence the
sensitivity of the degradation [23,83].

n general, prioritization of control and mitigation measures for restoration should be
focused on areas with medium to low sensitivity. Critical areas are in an advanced state
of degradation, which means costly interventions to revert to a natural state. Regarding
MEDALUS model, it demands a large geographic database, anticipating gaps and missing
values for the time series. In this study, the model generated from the MOS was low-
performing, for further studies, more sampling points should be considered to reduce
bias. In addition, due to scarce local meteorological data, the WorldClim global data was
used as a free platform. Therefore, the lack of historical data (climatological and socio-
economic data on soil characteristics) is one of the limitations for ecosystem monitoring
and degradation assessment in developing countries such as Peru. However, it should
be noted that these methodological shortcomings are generally present in other European
studies with similar analyses of land sensitivity to degradation [9,18,19,47,74]. The results
and proposals can be improved by decision-makers when implemented in the field in order
to mitigate degradation processes for sustainable land use.

5. Conclusions

This study assessed ESAI using MEDALUS model and GIS based on four indices (SQI,
CQI, VQI, and MQI) and 12 parameters in Florida district. Fragile class lands (48.5%) were
predominant in most of the study area with degradation process lands, wich may result
in the increasing or decreasing of either classes (Crítico, Potencial, No-affected) in future
scenarios. VQI, SQI, and MQI were the most triggering indices determining land fragility
in Florida district.

The ESAI map proved to be a good source of information to identify degradation
problems, and accordingly five ecological restoration proposals were stablished in order
to achieve sustainable development towards 2030: (i) production of organic fertilizers,
(ii) cultivated and improved pastures and livestock improvement, (iii) native forest restora-
tion, (iv) construction of reservoirs in the communities, and (v) use of new technologies.
These proposals are key to work towars management policies locally and nationally.
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