Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.inia.gob.pe/handle/inia/1090
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorParedes, Gabriela F.-
dc.contributor.authorYalta Macedo, Claudia E.-
dc.contributor.authorGutiérrez, Gustavo A.-
dc.contributor.authorVeli Rivera, Eudosio A.-
dc.coverage.spatialPerúes_PE
dc.date.accessioned2020-05-29T20:17:32Z-
dc.date.available2020-05-29T20:17:32Z-
dc.date.issued2020-05-12-
dc.identifier.citationParedes, G.F.; Yalta-Macedo, C.E.; Gutierrez, G.A.; Veli-Rivera, E.A. Genetic Diversity and Population Structure of Llamas (Lama glama) from the Camelid Germplasm Bank—Quimsachata. Genes 2020, 11, 541.es_PE
dc.identifier.urihttp://repositorio.inia.gob.pe/handle/inia/1090-
dc.description12 Páginases_PE
dc.description.abstractLlamas (Lama glama) are invaluable resources of Peru. Despite their importance, their population is decreasing. The Camelid Germplasm Bank—Quimsachata was created as a guardian of this South American camelid (SAC) species and established a bank of llamas from their two types, Ch’aku and Q’ara. However, these populations need to present high genetic diversity to be considered suitable conservation stocks. Thus, in the present study, 13 microsatellites specific for the SAC were used to assess the current genetic variability and differentiation of the llama population from the Bank. The global population showed high genetic diversity with a total of 157 different alleles, with an average of 12.08 alleles per microsatellite, an expected and observed heterozygosity of 0.758 and 0.707, respectively, and an average polymorphic information content (PIC) of 0.723. Although considered as two different breeds and managed separately, the genetic differentiation between Ch’aku and Q’ara was low (FST = 0.01). Accordingly, the gene flow value was high (Nm = 30.5). Overall, our results indicate the existence of high genetic variation among individuals, and thus, this llama population could be considered a suitable genetic stock for their conservation and for sustainability programs. Additionally, the 13 microsatellites can be used to study other Peruvian llama populations and monitor the genetic variability of llamas from the Camelid Germplasm Bank—Quimsachataes_PE
dc.description.tableofcontents1.- Introduction. 2.- Materials and Methods. 3.- Results. 4.- Discussion. 5.- Conclusions. References.es_PE
dc.formatapplication/pdfes_PE
dc.language.isoenges_PE
dc.publisherMPDIes_PE
dc.relation.ispartofGenes 2020, 11(5), 541es_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectLama glamaes_PE
dc.subjectCamelid Germplasm Bank-Quimsachataes_PE
dc.subjectMicrosatelliteses_PE
dc.subjectGenetic diversityes_PE
dc.subjectPopulation structurees_PE
dc.titleGenetic Diversity and Population Structure of Llamas (Lama glama) from the Camelid Germplasm Bank—Quimsachataes_PE
dc.typeinfo:eu-repo/semantics/articlees_PE
dc.subject.ocdeTecnología de modificación genéticaes_PE
dc.identifier.journalGeneses_PE
dc.relation.publisherversionhttps://doi.org/10.3390/genes11050541es_PE
dc.publisher.countrySwitzerlandes_PE
dc.identifier.doi10.3390/genes11050541-
Aparece en las colecciones: Artículos científicos



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons