Characterization of the complete mitochondrial genome of the black Alpaca breed of *Vicugna pacos* (Mammalia, Artiodactyla, Camelidae) from Puno, Peru

Danilo E. Bustamante, Claudia Esther Yalta-Macedo, Juancarlos Alejandro Cruz, Jorge Luis Maicelo-Quintana, Juan Carlos Guerrero-Abad & Dina Lida Gutierrez-Reynoso

To cite this article: Danilo E. Bustamante, Claudia Esther Yalta-Macedo, Juancarlos Alejandro Cruz, Jorge Luis Maicelo-Quintana, Juan Carlos Guerrero-Abad & Dina Lida Gutierrez-Reynoso (2020) Characterization of the complete mitochondrial genome of the black Alpaca breed of *Vicugna pacos* (Mammalia, Artiodactyla, Camelidae) from Puno, Peru, Mitochondrial DNA Part B, 5:2, 1383-1385, DOI: 10.1080/23802359.2020.1735962

To link to this article: https://doi.org/10.1080/23802359.2020.1735962
Characterization of the complete mitochondrial genome of the black Alpaca breed of *Vicugna pacos* (Mammalia, Artiodactyla, Camelidae) from Puno, Peru

Danilo E. Bustamante\(^a\)\(^b\)\(^c\), Claudia Esther Yalta-Macedo\(^b\), Juan Carlos Alejandro Cruz\(^b\), Jorge Luis Maicelo-Quintana\(^b\), Juan Carlos Guerrero-Abad\(^b\) and Dina Lida Gutierrez-Reynoso\(^b\)

\(^{a}\)Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Amazonas, Peru; \(^{b}\)Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología-Instituto Nacional de Innovación Agraria (INIA), Lima, Peru

ABSTRACT

The domestic South American cameld *Vicugna pacos* L. is distributed along Peru, Chile, Bolivia, and Argentina. Here, we contribute to the bioinformatics and evolutionary systematics of the Camelidae by performing high-throughput sequencing analysis on the black Huacaya breed of *V. pacos* from Puno, Peru. The black Huacaya breed mitogenome is 16,664 base pairs (bp) in length and contains 37 genes (GenBank accession MT044302). The mitogenome shares a high-level of gene synteny to other Camelidae (*Camelops, Camelus, Lama, and Vicugna*). The mitogenome of the black Huacaya breed of *V. pacos* situates it in a clade with *V. vicugna* Molina, sister to *Lama*. We anticipate that further mitogenome sequencing of different breeds from *Vicugna pacos* will improve our understanding of the evolutionary history of this taxon.

Alpacas (*Vicugna pacos*) and llamas (*Lama glama* L.), domestic South American camels, are the basis for livestock production in the High-Andean zones of Peru (Paredes et al. 2014). More than four million of alpacas in Peru positioned it as the first camelids fiber producer worldwide (90% of world production, Paredes et al. 2013). This alpaca population is composed of the Huacaya (more than 85%) and Suri breed (Quispe et al. 2009, Paredes-Peralta et al. 2011). Although selection pressures during many generations for fiber and color traits possibly lead to the loss of genetic variability during many generations for fiber and reproduction in any medium, provided the original work is properly cited.

ARTICLE HISTORY

Received 14 February 2020
Accepted 20 February 2020

KEYWORDS

Black Huacaya alpaca; mitogenome; Peru; phylogeny; *Vicugna pacos*

CONTACT Danilo E. Bustamante (ddanielobm@gmail.com) \(^{a}\) Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Amazonas, Peru

All authors contributed equally to the analysis and writing of this paper.

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Westbury et al. (2016) and Díaz-Maroto et al. (2019) based on mitogenome data. Further complete mitogenome sequencing of different breeds from *Vicugna pacos* (i.e., Suri breed) will help improve our understanding of the phylogenetics of the South American camelids.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Funding

This research was supported by the Programa Nacional de Innovación Agraria (PNIA): N° 8331-PE-IDB.

ORCID

Danilo E. Bustamante http://orcid.org/0000-0002-5979-6993

References

Paredes MM, Membrillo A, Azor PJ, Machaca JE, Torres D, Muñoz-Serrano A. 2013. Genetic and phenotypic variation in five populations of...